期刊文献+

基于进化算法优化GAN的轴承故障诊断 被引量:3

Bearing Fault Diagnosis Based on Generative Adversarial Nets Optimized by Evolutionary Conditions
下载PDF
导出
摘要 针对滚动轴承故障诊断故障样本类别不平衡的问题,提出一种基于进化算法优化的条件生成对抗网络(evolutionary conditional generative adversarial nets,简称ECGAN)故障诊断方法。首先,利用进化算法优化条件生成对抗网络中的生成器,使其在不同的损失函数下生成与原始样本分布相似的新样本,扩充数据集;其次,将生成的样本和原始样本输入判别器,提取出样本中有效的数据特征,判断输入样本的真假和类别;最后,通过对抗学习机制优化生成器和判别器,提高网络的故障识别能力。实验结果表明,在轴承故障样本数据类别不平衡的情况下,ECGAN模型具有较好的故障诊断性能。 Aimed at the problem of unbalanced fault samples in rolling bearing fault diagnosis,a fault diagnosis method based on conditional generative adversarial nets optimized by evolutionary algorithm(ECGAN)is proposed.Firstly,the generator in conditional generative adversarial nets is optimized by evolutionary algorithm to generate new samples similar to the original sample distribution under different loss functions so as to expand the data set.Then,the generated sample and the original sample are input to the discriminator to extract the valid data features of the sample and judge the authenticity and category of the input sample.Finally,the generator and discriminator are optimized by counter learning mechanism to improve the fault recognition ability of the nets.The experimental results show that the ECGAN method has better performance in fault diagnosis in the case of unbalanced sample data types.
作者 李可 贺少杰 宿磊 顾杰斐 苏文胜 卢立新 LI Ke;HE Shaojie;SU Lei;GU Jiefei;SU Wensheng;LU Lixin(Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment&Technology,Jiangnan University Wuxi,214122,China;Jiangsu Province Special Equipment Safety Supervision Inspection Institute Branch of Wuxi Wuxi,214071,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2023年第2期298-303,410,共7页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51775243,51705203,11902124) 江苏省重点研发计划资助项目(BE201702) 泰山产业领军人才工程资助项目。
关键词 故障诊断 不平衡分类 生成对抗网络 进化算法 fault diagnosis imbalanced classification generative adversarial nets evolutionary algorithm
  • 相关文献

参考文献7

二级参考文献47

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:146
  • 3Huang N E, Shen Z, Long S R, et al. A new view of nonlinear waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999(3): 417-457.
  • 4Yang Y, Cheng J S, Zhang K. An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems [J]. Measurement, 2012(45): 561-570.
  • 5Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
  • 6Rilling G, Flandrin P. On the influence of sampling on the empirical mode decomposition[C]//Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006.
  • 7Dragomiretskiy K , Zosso D . Variational mode decomposition[J]. IEEE Tran on Signal Processing, 2014, 62(3): 531-544.
  • 8Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York, USA. Plenum Press, 1981.
  • 9Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.
  • 10Peng Z K, improved transform: bearing[J]. TseP W, Chu F L. A comparison study of Hilbert-Huang transform and wavelet Application to fault diagnosis for rolling Mechanical Systems and Signal Processing, 2005(19): 974-988.

共引文献590

同被引文献40

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部