期刊文献+

改进离散熵在列车轴承损伤检测中的应用

Application of Improved Dispersion Entropy to Fault Detection of Axle‑Box Bearing in Train
下载PDF
导出
摘要 针对轴箱轴承早期损伤的检测问题,提出一种基于改进多尺度离散熵算法(improved multiscale dispersion entropy,简称IMDE)和支持向量机的诊断模型,通过提取振动信号中的关键信息有效识别轴承的健康状态。首先,考虑传统多尺度离散熵(multiscale dispersion entropy,简称MDE)因数据点重合和粗粒化尺度不断增大而引起的熵值误差增加、分布混乱及波动明显等缺陷,通过对粗粒化过程和离散熵的优化改进算法;其次,结合实际算例,针对高速列车轴箱轴承在不同运行状态下的振动数据进行试验验证。结果表明,相较于MDE,IMDE计算熵值的误差更小,鲁棒性更好,且支持向量机分类结果显示IMDE取得了更高的诊断精度。 Aiming at the problem of early damage detection of axle box bearings,a diagnosis model based on improved multiscale dispersion entropy(IMDE)and support vector machine is proposed to effectively identify the health state of bearings by extracting key information from vibration signals.This method mainly considers the shortcomings of traditional multi-scale dispersion entropy(MDE),such as the increase of entropy standard deviation,the confusion of distribution and the obvious fluctuation caused by the problem of data point coincidence and the increase of coarse-graining scale.The algorithm is improved by optimizing the coarse-graining procedure and the dispersion entropy.Then,a practical example is given to verify the vibration data of high-speed train axle box bearing under different operating conditions by experiments.The results show that the standard deviation of IMDE is smaller and the robustness is better than MDE,and the classification results of support vector machine show that IMDE has higher diagnosis accuracy.
作者 李永健 宋浩 李鹏 缪炳荣 熊庆 LI Yongjian;SONG Hao;LI Peng;MIAO Bingrong;XIONG Qing(School of Rail Transportation,Wuyi University Jiangmen,529020,China;State Key Laboratory of Traction Power,Southwest Jiaotong University Chengdu,610031,China;School of Intelligent Manufacturing and Automobile,Chengdu Vocational&Technical College of Industry Chengdu,610218,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2023年第2期304-311,410,共9页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51775456) 四川省自然科学基金面上资助项目(2022NSFSC0400)。
关键词 车辆工程 轴箱轴承 离散熵 特征提取 故障诊断 vehicle engineering axle box bearing dispersion entropy feature extraction fault diagnosis
  • 相关文献

参考文献7

二级参考文献74

  • 1孟建军,杨泽青,蒲光华,胥如迅.基于虚拟激励法的轨道车辆垂向振动响应分析[J].中国铁道科学,2012,33(2):89-94. 被引量:18
  • 2艾娜,吴作伟,任江华.支持向量机与人工神经网络[J].山东理工大学学报(自然科学版),2005,19(5):45-49. 被引量:32
  • 3郝建华,曾京,邬平波.铁路车辆垂向减振与悬挂系统参数优化[J].交通运输工程学报,2005,5(4):10-14. 被引量:17
  • 4郝建华,曾京,邬平波.铁道客车垂向随机减振及悬挂参数优化[J].铁道学报,2006,28(6):35-40. 被引量:20
  • 5SESHADRINATH J, SINGH B, PARNIGRAHI B K. Vibration analysis based interturn fault diagnosis in induction machines[J]. IEEE Transactions on Industrial Informatics. 2014, 10(1) 340-350.
  • 6WU Z H, HUANG N E. Ensemble empirical mode decompo- sition: a noise-assisted data analysis method[R]. Calverton: Center for Ocean-Land-Atmosphere Studies, 2009.
  • 7WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method[C] ,// The Royal Society. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences. London: The Royal Society, 2004: 1597-1611.
  • 8LEI Ya-guo, HE Zheng jia, ZI Yan-yang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications, 2011, 38(6).. 7334-7341.
  • 9ZVOKELJ M, ZUPAN S, PREBIL I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensembleempirical mode decomposition method[J]. Mechanical Systems and S(gnal Processing, 2011, 25(7): 26312653.
  • 10HUANG Jian, HU Xiao-guang, GENG Xin. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine[J]. Electric Power Systems Research, 2011, 81(2) : 400-407.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部