期刊文献+

一种改进的多源异构数据预处理方法 被引量:2

An Improved Multi-Source Heterogeneous Data Preprocessing Method
下载PDF
导出
摘要 数据预处理是所有数据融合中必不可少的内容,该阶段的关键操作是处理噪声数据,去除噪声有助于提升模型的训练结果。基于此,结合已有的研究成果,引入相似度度量的概念,在余弦相似度的基础上,用余弦值表示样本点和聚类中心之间的夹角,用该值对欧氏距离进行加权,将二者结合,构造出一种新的数据去噪方法。 Data preprocessing is an essential step in all data fusion,one of the key operations in this stage is the processing of noisy data,removing noise helps to improve the training results of the model.Based on this,combined with the existing research results,the concept of similarity measure is introduced.On the basis of cosine similarity,the cosine value is used to represent the included angle between the sample point and the cluster center,and the Euclidean distance is weighted with this value.Combining the two,a new data denoising method is constructed.
作者 许新华 XU Xinhua(Sias University,Xinzheng Henan 451150,China)
机构地区 郑州西亚斯学院
出处 《信息与电脑》 2023年第3期65-67,共3页 Information & Computer
基金 郑州西亚斯学院2022年度科研资助项目(项目编号:60) 河南省科技攻关项目(项目编号:222102210340、222102110280) 2022年本科高校课程思政样板课程(项目编号:教办高【2022】268号)。
关键词 预处理 噪声 相似度度量 preprocess noisy similarity measurement
  • 相关文献

参考文献9

二级参考文献62

  • 1刘典.全球数字贸易的格局演进、发展趋势与中国应对——基于跨境数据流动规制的视角[J].学术论坛,2021(1):95-104. 被引量:36
  • 2赵明辉 ,丘学林 ,叶春明 ,夏戡原 ,黄慈流 ,谢剑波 ,王平 .南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析[J].地球物理学报,2004,47(5):845-852. 被引量:113
  • 3Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295.
  • 4Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177.
  • 5Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14.
  • 6Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24.
  • 7Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38.
  • 8Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42.
  • 9Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8.
  • 10Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310.

共引文献143

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部