期刊文献+

基于圆形搜索机制的多反向复合鲸鱼优化算法

Whale algorithm based on circle search and multiple opposition-based learning
下载PDF
导出
摘要 为了改进鲸鱼优化算法存在的种群多样性和勘探开采能力不足等问题,提出了基于圆形搜索机制的多反向复合鲸鱼优化算法(CSOWOA).首先,针对种群多样性进行了改进.通过折射反向学习初始化种群,以便于搜索到更为隐蔽的空间,加强初始种群的多样性;在算法寻优过程中,通过适应度值大小来划分优势种群和劣势种群,分别对其进行折射反向学习和随机反向学习的多反向复合方式,确保算法寻优过程中种群分布的多样性,便于算法寻优。其次,针对算法勘探开采能力进行了改进.采用结合种群成功率的自适应权重来加强鲸鱼的包围搜索能力,同时在包围搜索过程中通过两种圆形搜索机制加强算法的勘探和开采能力,提升算法的收敛速度和寻优精度.最后,加入正态变异来扰动精英个体的位置,带动可能陷入停滞的鲸鱼种群,避免算法陷入局部最优.仿真实验在13个基准测试函数中与几个知名改进鲸鱼算法和经典智能优化算法进行比较,比较结果显示CSOWOA有明显的提升效果. In order to improve the population diversity and insufficient exploration and exploitation capacity of whale optimization algorithm,a multi-inverse composite whale optimization algorithm(CSOWOA)based on circular search mechanism is proposed.First,improvements were made for population diversity.The initial population is initialized by refractive backward learning through refraction,so as to find more hidden space and strengthen the diversity of the initial population.In the optimization process of the algorithm,the dominant population and the inferior population are divided by the size of the fitness value,and the multi-inverse composite method of refractive backward learning and random backward learning is applied to them respectively to ensure the diversity of the population in the process of algorithm seeking.Secondly,to improve the exploration and exploitation ability of the algorithm,adaptive weights combined with the population success rate are used to strengthen the bracketing search ability of algorithm,while the exploration and exploitation ability of the algorithm is strengthened by two circular search mechanisms in the bracketing search process to improve the convergence speed and the accuracy of the algorithm.Finally,normal variation is added to perturb the position of elite individuals to drive the whale populations that may fall into stagnation to avoid the algorithm from falling into local optimum.The simulation experiments are compared with several well-known improved whale algorithms and classical intelligent optimization algorithms in 13 benchmark test functions,and the comparison results show that CSOWOA has a significant enhancement effect.t.
作者 肖鹏 吴克晴 丁美芳 XIAO Peng;WU Keqing;DING Meifang(Jiangxi University of Science&Technology,School of Science,Ganzhou 341000,China)
出处 《微电子学与计算机》 2023年第5期1-11,共11页 Microelectronics & Computer
基金 国家自然科学基金资助项目(61364015)。
关键词 鲸鱼优化算法 圆形搜索机制 多反向学习机制 正态变异 whale algorithm circle search mechanisms multiple opposition-based learning Normal variation
  • 相关文献

参考文献12

二级参考文献84

  • 1吴阳,刘凯,陈柏,李芳,姚佳烽.自适应粒子群优化算法优化径向基函数神经网络用于电阻抗成像图像重建[J].仪器仪表学报,2020(6):240-249. 被引量:39
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3王晖.区域变换搜索的智能算法研究[D].武汉:武汉大学,2011.
  • 4J.Kennedy,R C Eberhart.Particle swarm optimization. Proceedings of the IEEE International Joint Conference on Neural Networks[C]. IEEE,1995.1942-1948.
  • 5Gandomi A H,Yun G J,Yang X S,et al.Chaos-enhanced accelerated particle swarm optimization[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(2):327-340.
  • 6Tizhoosh H.Opposition-based learning:A new scheme for machine intelligence. Proceedings of International Conference on Intelligent Agent,Web Technologies and Internet Commerce[C]. Vienna:IEEE,2005.695-701.
  • 7S Rahnamayan,H R Tizhoosh,M M A Salama.Opposition-based differential evolution algorithm. IEEE Congress on Evolutionary Computation[C]. Canada:IEEE,2006.2010-2017.
  • 8Wang H,Li H,Liu Y,et al.Opposition-based particle swarm algorithm with cauchy mutation. IEEE Congress on Evolutionary Computation[C]. Singapore:IEEE,2007.4750-4756.
  • 9Wang H,Wu Z J,Rahnamayan.Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences,2011,181(20):4699-4714.
  • 10Griffiths,David J.Introduction to Electrodynamics(3rd Ed)[M]. Prentice Hall,1998.386-389.

共引文献257

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部