摘要
Cahn-Hilliard-Navier-Stokes系统是描述两种互不相溶且不可压缩流体演化的著名界面系统.本文主要研究一般非线性条件下具有动态边界的Cahn-Hilliard-Navier-Stokes系统解的适定性及长时间行为,证明了弱解的整体存在性和唯一性,建立了在H×V_(I)中全局吸引子的存在性.
Cahn-Hilliard-Navier-Stokes system is a well-known interface system that describes the evolution of two immiscible incompressible fluids.The authors'aim in this paper is to study the well-posedness and longtime behavior of solutions for the Cahn-Hilliard-Navier-S tokes system with dynamic boundary conditions,the global existence,uniqueness of weak solutions for this system are proved and the existence of a global&ttractor inH xV_(I) is also established.
作者
黄旭凤
蒲志林
HUANG Xufeng;PU Zhilin(School of Mathematical Sciences,Sichuan Normal University,Chengdu 610066,China.)
出处
《数学年刊(A辑)》
CSCD
北大核心
2023年第1期1-16,共16页
Chinese Annals of Mathematics
基金
四川省科技厅科学研究项目(No.22CXTD0029)的资助。