期刊文献+

基于R-BERT-CNN模型的实体关系抽取 被引量:1

ENTITY RELATIONSHIP EXTRACTION BASED ON R-BERT-CNN
下载PDF
导出
摘要 针对传统实体关系抽取准确率不高,依赖人工标注且未能充分利用句子和目标实体语义的问题,提出一种预训练卷积神经网络模型(R-BERT-CNN)。将实体级信息融入预训练模型获取目标实体的语义;采用CNN提取句子级的语义信息;连接句子向量、标签向量和目标实体向量,获得全局信息;通过softmax分类器抽取实体关系。实验结果显示,在SemEval 2010 Task 8数据集上F1值达到了89.51%,比Attention-CNN、Att-Pooling-CNN模型分别提高3.61百分点和1.51百分点;比单独获取句子语义或目标实体语义的R-Bert、Bert-CNN模型分别提高2.61百分点和0.97百分点,训练时间分别缩短15和19 min。 Aimed at the problem of low accuracy of traditional entity relationship extraction,relying on manual annotation and failing to make full use of the semantics of sentences and target entities,a pre-trained convolutional neural network model(R-BERT-CNN)is proposed.The model integrated the entity-level information into the pre-training model to obtain the semantics of the target entity.CNN was used to extract the sentence-level semantic information.The sentence vector,label vector and target entity vector was connected to obtain global information.The entity relationship was extracted through the softmax classifier.The experimental results show that the F1 value on the SemEval 2010 Task 8 dataset reaches 89.51%,which is 3.61 percentage points and 1.51 percentage points higher than Attention-CNN and Att-Pooling-CNN models.Compared with the R-Bert and Bert-CNN models that obtain the semantics of the sentence or the target entity separately,the F1 value is improved by 2.61 percentage points and 0.97 percentage points respectively,and the training time is shortened by 15 min and 19 min respectively.
作者 曹卫东 徐秀丽 Cao Weidong;Xu Xiuli(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)
出处 《计算机应用与软件》 北大核心 2023年第4期222-229,共8页 Computer Applications and Software
基金 国家自然科学基金民航联合基金项目(U1833114) 民航科技创新重大专项(MHRD20160109) 民航安全能力项目(TRSA201803)。
关键词 预训练模型 BERT 卷积神经网络 自然语言处理 关系抽取 Pre-trained model BERT Convolutional neural network Natural language processing Relation extraction
  • 相关文献

参考文献6

二级参考文献70

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2何婷婷,徐超,李晶,赵君喆.基于种子自扩展的命名实体关系抽取方法[J].计算机工程,2006,32(21):183-184. 被引量:25
  • 3刘怀军,车万翔,刘挺.中文语义角色标注的特征工程[J].中文信息学报,2007,21(1):79-84. 被引量:39
  • 4刘群 李素建.基于《知网》的词汇语义相似度计算.中文计算语言学,2002,7(2):59-76.
  • 5C Aone,M Ramos Santacruz.Rees:A large-scale relation and event extraction system[C].In:Proc of the 6th Applied Natural Language Processing Conference.New York:ACM Press,2000.76-83.
  • 6T Zhang.Regularized Winnow methods[C].In:Advances in Neural Information Processing Systems (NIPS) 13.Cambridge:MIT Press,2001.703-709.
  • 7N Cristianini,J Shawe-Taylor,H Lodhi.Latent semantic kernels[J].Journal of Intelligent Information Systems,2002,18(2-3):127-152.
  • 8B Sch(o)lkopf,A Smola,K-R Müller.Kernel principal component analysis[G].In:Advances in Kernel Methods:Support Vector Learning.Cambridge:MIT Press,1999.327-352.
  • 9D Zelenko,C Aone,A Richardella.Kernel methods for relation extraction[J].Journal of Machine Learning Research,2003,3:1083-1106.
  • 10M Collins,N Duffy.Convolution kernels for natural language[C].In:Proc of Neural Information Processing Systems (NIPS) 14.Cambridge:MIT Press,2001.

共引文献309

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部