期刊文献+

基于加权Schatten-p范数的矩阵填充及其应用

MATRIX COMPLETION WITH WEIGHTED SCHATTEN-P NORM AND ITS APPLICATION
下载PDF
导出
摘要 基于核范数的矩阵填充模型中,由于对所有奇异值的惩罚力度一样以及实际应用中核范数对秩函数的逼近效果不佳,导致评分矩阵填充时准确性不高。针对这种情况,提出一种基于加权Schatten-p范数最小化模型。利用Schatten-p范数作为秩函数的逼近函数对评分矩阵进行低秩约束;采用对奇异值加权的方式来避免对所有奇异值用同一值收缩的问题,以更好地逼近原始秩函数;采用近端交替线性化最小化方法来求解非凸最小化问题。MovieLens数据集上的实验结果表明,相比加权核范数模型(WNNM)、卷积矩阵分解模型(ConvMF)、融合多维语义表示的概率矩阵分解模型(MFMSR),该模型提高了预测的准确性,在推荐性能指标上明显优于对比模型。 The matrix completion model based on nuclear norm cannot provide high prediction accuracy in filling rating matrix because of imposing the same punishments to all singular values,and the nuclear norm may not approximate the rank function well in practice.To solve the above problems,a weighted Schatten-p norm minimization model was proposed.Schatten-p norm was used as the approximation function of the rank function,leading to a low rank constraint.The singular values were assigned different weights to avoid shrinking all singular values with the same value and better approximate the original rank function.The proximal alternating linearized minimization was used to solve the non-convex minimization problem of matrix completion.The experimental results on MovieLens dataset show that the proposed model improves the accuracy of prediction and is superior to the weighted nuclear norm minimization(WNNM)model,convolutional matrix factorization(ConvMF)model and probabilistic matrix factorization model based on multidimensional semantic representation learning(MFMSR).
作者 潘伟 胡春安 Pan Wei;Hu Chun an(School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China)
出处 《计算机应用与软件》 北大核心 2023年第4期230-235,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61562038)。
关键词 推荐系统 矩阵填充 凸优化算法 低秩 Recommendation systems Matrix completion Convex optimization algorithm Low-rank
  • 相关文献

参考文献6

二级参考文献35

  • 1陈敏铭.矩阵恢复与重建[D].北京:中国科学院计算技术研究所,2010.
  • 2Zhang F,Chang H. A collaborative filtering algorithm embedded BP network to ameliorate sparsity issue[C]//Proceedings of 2005 International Conference on Machine Learning and Cyber- netics, 2005. IEEE, 2005 : 1839-1844.
  • 3Jung K Y, Hwang H J, Kang U G. Constructing full matrix through naive Bayesian for collaborative filtering[M]//Compu-tational Intelligence. Springer Berlin Heidelberg, 2006: 1210- 1215.
  • 4Cands E J,Recht B. Exact matrix completion via convex opti- mization[J]. Foundations of Computational mathematics, 2009, 9(6) :717-772.
  • 5Toh K C, Yun S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Paci- fic Journal of Optimization, 2010,6 (15) : 615-640.
  • 6Lin Zhou-chen, Chen Min-ming, Ma Yi. The augmented lagrange multiplier method for exact recovery of corrupted low-rank ma- trices[J], arXiv preprint arXiv: 1009. 5055,2010.
  • 7Tao M,Yuan X. Recovering low-rank and sparse components of matrices from incomplete and noisy observations [J]. SIAM Journal on Optimization, 2011,21 ( 1 ) : 57-81.
  • 8Yuan X,ang J. Sparse and low-rank matrix decomposition via alternating direction methods[J]. Preprint, 2009,9 ( 1 ) : ]-16.
  • 9Yang J,Yuan X. Linearized augmented Lagrangian and alterna- ting direction methods for nuclear norm minimization[J]. Mathe- maties of Computation, 2013,82 (281) : 301-329.
  • 10Lin Z, Liu R, Su Z. Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation[J]//arX- iv: 1109. 0367,2011.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部