期刊文献+

一种基于改进卷积神经网络的RGB-D室内场景分类方法 被引量:1

An RGB-D Indoor Scene Classification Method Based on Improved Convolutional Neural Network
下载PDF
导出
摘要 RGB-D室内场景分类是一项极具挑战性的工作,卷积神经网络在场景分类方面已经取得了非常好的效果,但是由于室内场景存在多种目标且布局复杂,另外不同类别的场景之间存在相似性,因此传统卷积神经网络直接应用于室内场景分类存在着很多问题。针对这些问题,本文提出一种改进的基于卷积神经网络的RGB-D室内场景分类方法,包括2个分支,一个是基于ResNet-18的全局特征提取分支,另一个是深度与语义信息的融合分支。将2个分支得到的特征进行融合,达到室内场景分类的目的。在SUN RGB-D数据集上的实验结果表明,所提出的方法优于现有的对比方法。 RGB-D indoor scene classification is a challenging task.In this field,convolutional neural network has yielded excellent outcomes in terms of scene classification.However,many problems arise in the immediate application of traditional convolutional neural networks to indoor scene classification due to the multiple objectives,complex layout of indoor scenes,and the similarity existed between different categories of scenes.Aiming at these problems,an improved RGB-D indoor scene classification method based on convolutional neural networks is proposed,including two branches,one of which is a global feature extraction branch based on ResNet-18 and the other is a fusion branch of depth and semantic information.The features obtained from the two branches are fused for the purpose of indoor scene classification.Experimental results based on the SUN RGB-D dataset have proven the superiority of the proposed method in contrast to existing comparison methods.
作者 朱原冶 倪建军 唐广翼 ZHU Yuan-ye;NI Jian-jun;TANG Guang-yi(College of Internet of Things Engineering,Hohai University,Changzhou 213022,China)
出处 《计算机与现代化》 2023年第4期73-77,共5页 Computer and Modernization
基金 国家自然科学基金资助项目(61873086) 常州市科技支撑计划项目(CE20215022)。
关键词 卷积神经网络 场景分类 深度学习 convolutional neural network scene classification deep learning
  • 相关文献

参考文献5

二级参考文献144

  • 1李桂芝,安成万,杨国胜,谭民,涂序彦.基于场景识别的移动机器人定位方法研究[J].机器人,2005,27(2):123-127. 被引量:20
  • 2Datta R, Joshi I3, Li J, et al. Image retrieval: ideas, influences, and trends of the new age[J]. ACM Computing Surveys, 2008, 40(2) : 1 - O0.
  • 3Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories.E C~// Proc. of the IEEE Conference on Co~nputer Vision and PatternRecognition, 2006:2169 - 2178.
  • 4Quattoni A, Torralba A. Recognizing indoor scenesEC]ff Proc. of the IEEE Conference on Computer Vision and Pattern Recogni- tion, 2009 ~ 413 - 420.
  • 5Xiao J, Hays J, Ehinger K, et al. Sun database: large-scale scene recognition {tom abbey to zooEC]//Proc, of the IEEE Conference on Computer Vision and Pattern Recognition, 2010: 3485 - 3492.
  • 6Zhou B, Lapedri~a A, Xiao J, et al. Learning deep {eatures for scene recognition using places database[C]//Proc, of the Ad- vances in Neural Information Processing Systems, 2014: 2- 7.
  • 7Li F F, Perona P. A Bayesian hierarchical model for learning natural scene categories[C]//Proc, of the IEEE Conference on Computer Vision and Pattern Recognition, 2005:524 - 531.
  • 8Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hi- erarchical image databaseEC]//Proc, of the IEEE Conference on Computer Vision and Pattern Recognition, 2009 : 1 - 9.
  • 9Wang J Z, Li J, Wiederhold G. SIMPLicity: semantics-sensi- tive integrated matching for picture libraries~J3. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001, 23 (9) : 947 - 963.
  • 10Zhang H J, Wu J, Zhong D, et al. An integrated system for content-based video retrieval and browsing[J]. Pattern Recog- nition, 1997, 30(4,): 643-658.

共引文献27

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部