期刊文献+

基于旋转编码器信号的滚动轴承故障特征增强提取 被引量:2

Enhanced extraction of rolling bearing fault features based on rotary encoder signals
下载PDF
导出
摘要 针对滚动轴承故障特征较弱且振动传感器安装受限的场合下故障特征不易提取的问题。结合旋转编码器信号传递路径短、干扰少等优势,提出一种基于旋转编码器瞬时角速度(instantaneous angular speed,IAS)信号的滚动轴承故障特征增强提取法。首先,使用去相位算法(de-phasing algorithm,DPA)抑制转频及其谐波等严格周期性分量;其次,通过多点优化最小熵反褶积(multi-point optimization minimum entropy deconvolution adjusted,MOMEDA)增强滚动轴承故障冲击分量;最后,对增强后的信号进行频谱分析,提取轴承故障冲击特征。通过仿真和轴承外圈实测数据验证所提方法的有效性。 For the occasion when the fault characteristics of rolling bearings are weak and the installation of vibration sensors is limited,fault characteristics are not easy to extract.In this paper,combined with the advantages of the short signal transmission path and little interference of the rotary encoder,a method was proposed for enhancing the fault characteristics of rolling bearings based on instantaneous angular speed(IAS)signal of the rotary encoder.Firstly,the de-phasing algorithm(DPA)was used to suppress the strict periodic components such as the frequency conversion and its harmonics;secondly,the bearing fault impact component was enhanced by multi-point optimization minimum entropy deconvolution adjusted(MOMEDA);finally,the enhanced signal was analyzed in the spectrum to extract the bearing fault impact characteristics.The effectiveness of the proposed method was verified by simulation and measured data of a bearing outer ring.
作者 朱云贵 郭瑜 邹翔 田田 徐万通 ZHU Yungui;GUO Yu;ZOU Xiang;TIAN Tian;XU Wantong(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第8期119-125,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(52165067) 云南省科技计划重大专项项目(202002AC080001)。
关键词 滚动轴承 编码器 瞬时角速度(IAS) 去相位算法(DPA) 最小熵反褶积(MOMEDA) 故障特征提取 rolling bearing encoder instantaneous angular speed(IAS) de-phase algorithm(DPA) multi-point optimization minimum entropy deconvolution adjusted(MOMEDA) fault feature extraction
  • 相关文献

参考文献5

二级参考文献25

共引文献82

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部