期刊文献+

圆锥曲线中两直线斜率关系定值下的定点的统一性质 被引量:1

下载PDF
导出
摘要 本文证明两类性质,从圆锥曲线中一定点P引两条直线与该圆锥曲线分别交于点A、B,一是若直线PA和PB的斜率之和为定值t(t≠0)时,直线AB过定点G,当t变化时,定点G的轨迹是一条与圆锥曲线相切的直线,且切点是点P关于圆锥曲线长轴的对称点.二是若直线PA和PB的斜率之积为定值t(t≠0)时,直线AB过定点G,当t变化时,椭圆和双曲线背景下的定点G的轨迹是一条过原点的直线,而抛物线背景下的定点G的轨迹是一条平行于对称轴的直线.
  • 相关文献

参考文献1

二级参考文献1

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部