期刊文献+

基于位姿图优化的势均衡多伯努利滤波器SLAM方法

Cardinalized balanced multi-Bernoulli filter SLAM method based on pose graph optimization
下载PDF
导出
摘要 在复杂室内环境下,传统基于随机有限集理论的SLAM方法存在机器人位姿精度低、计算量大的问题。针对此问题,提出一种基于位姿图优化的势均衡多伯努利滤波器SLAM方法。首先,该方法通过势均衡多伯努利滤波器获得地图特征估计,避免了数据关联。其次,提出了自适应信息控制法,丰富先验信息。然后,通过自适应信息控制法将位姿图优化理论与势均衡多伯努利滤波器SLAM结合,优化机器人的位姿估计。最后,进行实验对比分析,结果表明所提方法比RB-PHD-SLAM方法有更好的SLAM精度及实时性。 In the complex indoor environment,the traditional SLAM method based on random finite set theory has the problems of low robot pose accuracy and large amount of calculation.To solve these problems,a cardinalized balanced multi-Bernoulli filter SLAM method based on pose graph optimization was proposed.First of all,the cardinalized balanced multi-Bernoulli filter was used to estimate the map features,which avoided data association.What is more,an adaptive information control method was proposed to enrich the prior information.Then,the pose graph optimization theory was combined with cardinalized balanced multi-Bernoulli filter SLAM through adaptive information control method to optimize the pose estimation of the robot.Finally,through experimental comparative analysis,the results show that this method have better SLAM accuracy and real-time performance than the RB-PHD-SLAM method.
作者 张子菁 章飞 ZHANG Zijing;ZHANG Fei(Ocean College,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《智能科学与技术学报》 CSCD 2023年第1期113-120,共8页 Chinese Journal of Intelligent Science and Technology
基金 国家自然科学基金资助项目(No.61801170,No.61801435)。
关键词 SLAM 随机有限集理论 势均衡多伯努利滤波器 位姿图优化 SLAM random finite set theory cardinalized balanced multi-Bernoulli filter posegraph optimization
  • 相关文献

参考文献2

二级参考文献20

  • 1郑南宁.人工智能新时代[J].智能科学与技术学报,2019,0(1):1-3. 被引量:62
  • 2Smith R,Self M,Chesseman P.Estimating uncertain spatial relationships in robotics[C].Proc of IEEE Int Conf on Robotics and Automation.North Carolina: IEEE Press,1987: 850-858.
  • 3Matheron G.Random sets and integral geometry[M].New York: Wiley,1975: 21-25.
  • 4Goodman I R,Mahler R,Nguyen H.Mathematics of data fusion[M].Boston: Kluwer Academic Publishers,1997: 90-95.
  • 5Mahler R.Statistical multisource multitarget information fusion[M].Norwood: Artech House,2007: 49-51.
  • 6Mahler R.Multi-target Bayes filtering via first-order multi-target moments[J].IEEE Trans on Aerospace and Electronic Systems,2003,39(4): 1152-1178.
  • 7Mahler R.PHD filters of higher order in target number[J].IEEE Trans on Aerospace and Electronic Systems,2007,43(4): 1523-1543.
  • 8Vo B N,Singh S,Doucet A.Sequential Monte Carlo methods for multi-target filtering with random finite sets[J].IEEE Trans on Aerospace and Electronic Systems,2005,41(4): 1224-1245.
  • 9Vo B N,Ma W K.The gaussian mixture probability hypothesis density filter[J].IEEE Trans on Signal Processing,2006,54(11): 4091-4104.
  • 10Mullane J,Vo B N,Martin D.Rao-Blackwellised PHD SLAM[C].Proc of IEEE Int Conf on Robotics and Automation.Anchorage: IEEE Press,2010: 5410-5416.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部