期刊文献+

海上船舶智能检测及其关键算法研究

Research on Marine Ship Detection and Its Algorithms
下载PDF
导出
摘要 海上船舶检测环境复杂、实时监测难度大。针对传统滑动窗口遍历搜索法运算量大、实时性差的问题,提出了一种基于似物性和相似度匹配的快速传播检测算法。首先,提取正、负样本的规范二值化梯度特征,用支持向量机的方法训练分类器,用于检测显著性区域。其次,针对分类器多尺度筛选的问题,引入相似度匹配的过滤算法。最后,针对船舶上人员的检测,运用方向梯度直方图(Histogram of Oriented Gradient,HOG)+支持向量机(Support Vector Machine,SVM)的方式训练分类器,提取候选框的HOG特征作为目标判定。 The marine ship detection environment is complex and the real-time monitoring is difficult. A fast propagation detection algorithm based on similarity matching and similarity matching is proposed to solve the problem of large computation and poor real-time performance of traditional sliding window traversal search method. Firstly, the canonical binarization gradient features of positive and negative samples are extracted, and then the classifier is trained with a Support Vector Machine method to detect significant regions. Secondly, to solve the problem of multi-scale classification, a similarity matching filtering algorithm is introduced. Finally, the Histogram of Oriented Gradient(HOG)+Support Vector Machine(SVM) is used to train the classifier, and the HOG feature of the candidate box is extracted as the target.
作者 张训源 王华超 吴庆海 蔡喜光 ZHANG Xunyuan;WANG Huachao;WU Qinghai;CAI Xiguang(Department of Electro-machinery Engineering of Weihai Ocean Vocational College,Weihai 264300;Weihai Intelligent Marine Fishery Equipment Engineering Technology Research Center,Weihai 264300)
出处 《现代制造技术与装备》 2022年第10期32-35,共4页 Modern Manufacturing Technology and Equipment
基金 威海市智慧海洋渔业装备工程技术研究中心科研专项资金(WSOFE20200003)。
关键词 似物性目标检测 二值化规范梯度 相似度匹配 方向梯度直方图(HOG)特征 object similarity detection binarization gauge gradient similarity matching Histogram of Oriented Gradient(HOG)feature
  • 相关文献

参考文献13

二级参考文献91

  • 1窦建军,文俊,刘重庆.基于颜色直方图的图像检索技术[J].红外与激光工程,2005,34(1):84-88. 被引量:39
  • 2胡必鑫.基于内容图像检索中的颜色特征描述[J].计算机工程与应用,2005,41(16):48-50. 被引量:9
  • 3王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 4李海芳,贺静,焦丽鹏.基于颜色特征的图像情感分类[J].计算机应用,2007,27(2):453-455. 被引量:10
  • 5VAPNIK V N. The nature of statical learning theory [ M ]. London: Springer-Verlag, 1995.
  • 6VAPNIK V N. Principles of risk minimization for learning theory[ C]// Advances in Neural Information Processing Systems 4. San Francisco: Morgan Kaufmann Publishers, 1992 : 831 - 838.
  • 7FREUND Y, SCHAPIRE R E. A decision-theretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55( 1 ) : 119-139.
  • 8DUDA R O,HART P E.模式分类[M].李宏东,等译.北京:电子工业出版社.2001.
  • 9CHANG C C, LIN C J. LIB SVM:a library for support vector machines[ EB/OL]. (2002-03-10). http://www. csie. ntu. edu. tw/-cjlin/papers/guide/guide. pdf.
  • 10LIN C J. LIBSVM [ EB/OL ]. (2003-06-23). http ://www. csie. ntu. edu. tw/- cjlin/.

共引文献415

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部