期刊文献+

快递服务缺陷诊断识别与质量改进

Defect diagnosis identification and quality improvement of express service
下载PDF
导出
摘要 为科学合理地诊断识别并评价快递服务缺陷,以百度贴吧在线评论为数据源,采用Python及潜在狄利克雷分配(latent Dirichlet allocation,LDA)主题模型等工具及方法,构建数据获取→情感分类→主题提取→缺陷评估的快递服务缺陷识别模型,诊断识别顺丰、邮政特快专递服务、圆通、申通、中通、韵达、百世汇通7家快递企业服务质量的主要缺陷因素,提出改进服务质量的建议。研究结果表明:快递服务质量的影响因素主要包括总体印象、快递时效、信息质量、收费服务、物品安全和服务过程等,从细分指标分析可知快递丢失短少、投诉处理、货品完好性、信息更新及时性、联系渠道、流通速度等是快递服务缺陷的主要影响因素。为提升用户满意度,快递企业需从快递物品安全、快递运输时效、信息更新速度、售后服务响应等方面进行质量改进。 In order to diagnose,identify and evaluate the defects of express service both scientifically and reasonably,Python and latent Dirichlet allocation(LDA)subject model,coupled with the online review by searching Baidu Tieba are adopted.The express service defect identification model focus on its process which is from data acquisition to emotional classification to subject extraction and to defect evaluation.This model is introduced to diagnose and identify the main defect factors in the service quality of seven express enterprises,namely SF Express,Express Mail Service(EMS),YTO,STO,ZTO,Yunda and Best Express,then some suggestions are given to improve the quality of express service.The research results show that the factors affecting the quality of express service mainly include the overall impression,express efficiency,information quality,fee collection,goods safety and service process,etc.From the analysis of subdivided indicators,it can be seen that the main factors affecting the service defects are parcel loss,complaint feedback,integrity of goods,update of real time information,contact channels and delivery speed.In order to improve customer satisfaction,express enterprises should improve the quality of express goods in the aspects of safety,delivery time,information update speed,after sale service and so on.
作者 丁平 王宝义 王寒寒 DING Ping;WANG Baoyi;WANG Hanhan(School of Transportation and Logistics Engineering,Shandong Jiaotong University,Jinan 250357,China;Shandong Key Laboratory of Smart Transportation(preparation),Jinan 250357,China)
出处 《山东交通学院学报》 CAS 2023年第2期57-66,共10页 Journal of Shandong Jiaotong University
基金 山东交通学院研究生科技创新项目(2022YK038)。
关键词 在线评论 情感分类 缺陷识别 LDA主题模型 快递服务 online review sentiment classification defect identification LDA subject model express service
  • 相关文献

参考文献16

二级参考文献158

共引文献1025

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部