期刊文献+

microRNA-378b对心脏成纤维细胞纤维化水平的影响及机制研究

Effect of microRNA-378b on cardiac fibroblasts fibrosis and its mechanism
原文传递
导出
摘要 目的研究microRNA-378b(miR-378b)对心脏成纤维细胞的纤维化水平的影响及分子机制。方法小鼠行慢性心肌梗死手术构建体内心肌纤维化模型,利用转化生长因子-β(TGF-β)诱导原代心脏成纤维细胞发生纤维化以构建体外心肌纤维化模型;实时荧光定量PCR(qRT-PCR)法检测2种纤维化模型中miR-378b的表达水平;Western blotting法检测miR-378b模拟物和抑制物对心脏成纤维细胞α-平滑肌肌动蛋白(α-SMA,心肌纤维化特异性指标)表达量的影响;TargetScan、miRDB和miRWalk软件预测miR-378b的下游靶基因,双荧光素酶实验验证miR-378b与生长相关蛋白43(GAP43)的靶向关系;Western blotting法检测miR-378b模拟物和抑制物对心脏成纤维细胞GAP43表达的影响;Western blotting法检测体内和体外2种纤维化模型中GAP43的蛋白水平。结果小鼠心肌纤维化模型组miR-378b表达量较假手术组显著降低(P<0.01),心脏成纤维细胞TGF-β处理组miR-378b表达量较对照组显著降低(P<0.001)。在基础水平和TGF-β处理后,与对照模拟物组比较,miR-378b模拟物显著降低细胞的α-SMA蛋白水平(P<0.05);在基础水平,与对照抑制物组比较,miR-378b抑制物可显著升高细胞的α-SMA蛋白水平(P<0.05);但在TGF-β处理的细胞中,miR-378b抑制物不能进一步增加α-SMA蛋白表达量。GAP43是miR-378b直接作用的下游靶基因,与对照组比较,miR-378b可负调控心脏成纤维细胞GAP43的蛋白表达水平(P<0.01)。心肌纤维化模型组小鼠心肌GAP43蛋白表达量较假手术组显著升高(P<0.01),心脏成纤维细胞TGF-β处理组GAP43蛋白表达量较对照组显著升高(P<0.001)。结论miR-378b可抑制心脏成纤维细胞纤维化,该功能可能通过抑制其下游靶基因GAP43发挥作用。 Objective To investigate the effect of microRNA-378b(miR-378b)on the fibrosis level of cardiac fibroblasts and its molecular mechanism.Methods The model of myocardial fibrosis in vivo was established by operation of chronic myocardial infarction in mice,transforming growth factor-β(TGF-β)was used to treat cardiac fibroblasts to construct myocardial fibrosis model in vitro.Real-time fluorescence quantitative PCR(qRT-PCR)was used to detect the expression levels of miR-378b in two fibrosis models.The effects of miR-378b mimics and inhibitors onα-smooth muscle actin(α-SMA,a specific indicator of myocardial fibrosis)expression of cardiac fibroblasts were detected by Western blotting.The downstream target genes of miR-378b were predicted by three softwares(TargetScan,miRDB,and miRWalk),double luciferase experiment verified the targeting relationship between miR-378b and GAP43.Western blotting was used to detect the effects of miR-378b mimics and inhibitors on GAP43 in cardiac fibroblasts.The protein levels of GAP43 in two fibrosis models were detected by Western blotting.Results The expression of miR-378b in the mouse myocardial fibrosis model group was significantly decreased compared with the sham operation group(P<0.01),and the expression of miR-378b in the cardiac fibroblast TGF-βtreatment group was significantly decreased compared with the control group(P<0.001).After treatment with TGF-βand in basal level,miR-378b mimics significantly decreasedα-SMA protein level compared with control mimics group(P<0.05).At the basal level,compared with the control group,miR-378b inhibitors significantly increased theα-SMA protein level of cells(P<0.05).However,miR-378b inhibitors did not further increaseα-SMA protein expression in TGF-β-treated cells.GAP43 was a downstream target gene directly affected by miR-378b.Compared with the control group,miR-378b can negatively regulate the protein expression level of GAP43 in cardiac fibroblasts(P<0.01).Compared with sham operation group,the expression level of GAP43 protein in myocardial fibrosis model group was significantly increased(P<0.01),and that in cardiac fibroblast TGF-βtreatment group was significantly increased compared with control group(P<0.001).Conclusion miR-378b can inhibit fibrosis level of cardiac fibroblasts,which may play a role through its downstream target gene GAP43.
作者 姜敏 李姗姗 王春 郑闻 张伟 邓慧 戴阳 顾寰宇 JIANG Min;LI Shanshan;WANG Chun;ZHENG Wen;ZHANG Wei;DENG Hui;DAI Yang;GU Huanyu(Department of Geriatrics,Nanjing Drum Tower Hospital,the Affiliated Hospital of Medical School of Nanjing University,Nanjing 210008,China)
出处 《药物评价研究》 CAS 2023年第2期370-376,共7页 Drug Evaluation Research
基金 南京市卫生科技发展专项资金项目计划(YKK19052)。
关键词 心脏成纤维细胞 心肌纤维化 microRNA-378b GAP43 Α-平滑肌肌动蛋白 cardiac fibroblast cardiac fibrosis microRNA-378b GAP43 α-smooth muscle actin
  • 相关文献

参考文献1

二级参考文献38

  • 1Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G., and MeHo, C.C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C, elegans developmental timing. Cell 106: 23-34.
  • 2Henke, J.I., Goergen, D., Zheng, J., Song, Y., Schuttler, C.G., Fehr, C., Junemann, C., and Niepmann, M. (2008). microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 27: 3300--3310.
  • 3Hock, J., and Meister, G. (2008). The Argonaute protein family. Genome Biol. 9: 210.
  • 4Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, El). (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834-838.
  • 5Kent, WJ. (2002). BLAT--the BLAST-like alignment tool. Genome Res. 12: 656-664.
  • 6Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J., and Plasterk, R.H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15: 2654-2659.
  • 7Kim, V.N. (2004). MicroRNA precursors in motion: Exportin-5 mediates their nuclear export. Trends Cell Biol. 14: 156--159.
  • 8Kim, V.N., Han, J., and Siomi, M.C. (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10: 126--139.
  • 9Klattenhoff, C., and Theurkauf, W. (2008). Biogenesis and germline functions of piRNAs. Development 135: 3-9.
  • 10Kumar, S., Nei, M., Dudley, J., biologist-centric software for and Tamura, K. (2008). MEGA: A evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9: 299-306.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部