期刊文献+

Novel LaFe_(2)O_(4)spinel structure with a large oxygen reduction response towards protonic ceramic fuel cell cathode 被引量:5

原文传递
导出
摘要 Highly active and stable electrocatalysts are mandatory for developing high-performance and longlasting fuel cells.The current study demonstrates a high oxygen reduction reaction(ORR)electrocatalytic activity of a novel spinel-structured LaFe_(2)O_(4)via a self-doping strategy.The LaFe_(2)O_(4)demonstrates excellent ORR activity in a protonic ceramic fuel cell(PCFC)at temperature range of 350-500℃.The high ORR activity of LaFe_(2)O_(4)is mainly attributed to the facile release of oxide and proton ions,and improved synergistic incorporation abilities associated with interplay of multivalent Fe^(3+)/Fe^(2+)and La^(3+)ions.Using LaFe_(2)O_(4)as cathode over proton conducting BaZr_(0.4)Ce_(0.4)Y_(0.2)O_(3)(BZCY)electrolyte,the fuel cell has delivered a high-power density of 806 mW/cm^(2)operating at 500℃.Different spectroscopic and calculations methods such as UV-visible,Raman,X-ray photoelectron spectroscopy and density functional theory(DFT)calculations were performed to screen the potential application of LaFe_(2)O_(4)as cathode.This study would help in developing functional cobalt-free ORR electrocatalysts for low temperature-PCFCs(LT-PCFCs)and solid oxide fuel cells(SOFCs)applications.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第3期413-421,I0004,共10页 稀土学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(51772080,11604088,51706093) Jiangsu Provence Talent Program(JSSCRC2021491)。
  • 相关文献

同被引文献28

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部