期刊文献+

预测-五阶容积卡尔曼滤波方法 被引量:2

Predictive fifth-degree cubature Kalman filter method
原文传递
导出
摘要 为适用于强非线性、非高斯过程噪声系统,结合预测滤波(PF)与高阶容积卡尔曼滤波(HCKF),提出一种预测-五阶容积卡尔曼滤波(P5thCKF)方法。通过预测滤波方法对系统模型中的过程噪声及其方差阵进行实时调整,进而将新模型代入到五阶容积卡尔曼滤波框架中进行实时递推状态估计。推导了五阶球面单形-径向积分准则,采用五阶球面单形积分准则处理球面积分,广义高斯-拉盖尔积分准则处理径向积分;描述了预测滤波方法并对模型误差调整量进行了推导。通过2个仿真实验验证了本文方法在强非线性、非高斯过程噪声系统中的可行性以及应用于工程实践的可能性。 A Predictive fifth-degree Cubature Kalman Filter(P5thCKF)method,which combines the Predictive Filter(PF)and the High-degree Cubature Kalman Filter(HCKF)is proposed for strongly nonlinear and non-Gaussian process noise systems.The PF is used to adjust the process noise and variance matrix in the system model in real time,and then the new model is put into the fifth-degree cubature Kalman filter framework to perform real-time recursive state estimation.The fifth-degree spherical simplex-radial rule is derived and is used to deal with spherical integration,and the generalized Gauss-Laguerre integral rule is used to deal with radial integration.The predictive filtering method is described,and the error adjustment amount of the model derived.The feasibility of the proposed method in strongly nonlinear and non-Gaussian process noise systems and its possible application to engineering practice are verified by two simulation experiments.
作者 赵祥丹 王彪 王志胜 杨忠 Xiangdan ZHAO;Biao WANG;Zhisheng WANG;Zhong YANG(College of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2023年第6期249-261,共13页 Acta Aeronautica et Astronautica Sinica
基金 航空科学基金(201928052006) 贵州省科技计划项目([2020]2Y044)。
关键词 预测滤波 高阶容积卡尔曼滤波 预测-五阶容积卡尔曼滤波 五阶球面单形积分准则 广义高斯-拉盖尔积分准则 predictive filter high-degree cubature Kalman filter predictive fifth-degree cubature Kalman filter fifth-degree spherical simplex rule generalized Gauss-Laguerre integral rule
  • 相关文献

参考文献10

二级参考文献66

  • 1冉昌艳,程向红,王海鹏.稀疏网格高斯滤波器在SINS初始对准中的应用[J].中国惯性技术学报,2013,21(5):591-597. 被引量:3
  • 2Bhariya S, Whiteley J R. Benefits of Factorized RBF-Besed NM-PC. Computers and Chemical Engineering, 2002, 26(9): 1185-1199
  • 3Kasparian V, Batur C. Model Reference Based Neural Network Adaptive Controller. ISA Trans, 1998, 37( 1 ) : 21 - 39
  • 4Barreim A. Application of Conieity Stability Criteria to Multivariable Expert Control Systems. In: Proc of the IEEE International Conference on System Engineering, Pittsburgh, PA, USA, 1990, 148- 151
  • 5Espada A, Berreim A. Robust Stability of Fuzzy Control Systems Based on Conicity Conditions. Automatica, 1999, 35(4) : 643 - 654
  • 6Fernandez C J. Direct Control with Radial Basis Function Net- works: Stability Analysis and Applications. Journal of System Architecture, 1998, 44(8) : 583- 596
  • 7Sanner R M, Slotin I E. Gaussian Networks for Direct Adaptive Control. IEEE Trans on Neural Networks, 1992, 3(6): 837-864
  • 8Tan K K, Huan4g S N. Adaptive Robust Motion Control for Precise Trajectory Tracking Applications, ISA Trans, 2001, 40( 1 ) : 50 -71
  • 9Wang Lei, Zhang Haitao, Chen Zonghai. Hybrid RBF Neural Network Based Prefraetionator Modeling and Control, In: Proc of the International Conference on Control and Automation. Xiamen, China, 2002, 463-467
  • 10Hartman E J, Keeler J D. Layered Neural Networks with Gaussian Hidden Units as Universal Approximation. Neural Compute, 1990,2:210-215

共引文献81

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部