期刊文献+

改进的残差3D-CNN的高光谱遥感影像分类 被引量:2

Hyperspectral remote sensing image classification based on improved residual 3D-CNN
原文传递
导出
摘要 针对高光谱遥感影像分类中空间特征和光谱特征利用率低问题,该文综合三维卷积神经网络、谷歌神经网络和残差神经网络的优势,提出融合改进Inception模块的残差三维卷积神经网络高光谱遥感影像分类方法。改进后的Inception模块包括4条不同的卷积层分支,用以提取蕴涵在高光谱遥感影像中多尺度的特征;利用了3D卷积核代替2D卷积核能直接同时提取高光谱遥感影像中更丰富的空-谱特征;通过残差结构连接分支提取特征缓解了梯度消失的问题,提取更深层次的特征。实验表明,该文算法不仅提高了条状和线状地物区域的边缘分类准确率,对小目标的分类能力也得到了增强。 Aiming at the low utilization rate of spatial features and spectral features in hyperspectral remote sensing image classification,this paper proposed a residual three dimensional convolutional neural network,3D-CNN hyperspectral remote sensing image classification method which integrated improved Inception module,combing the advantages of three-dimensional convolutional neural network,Google neural network and residual neural network.The improved Inception module included four branches of different convolution layers to extract multi-scale features contained in hyperspectral remote sensing images.3Dconvolution kernel was used instead of 2D convolution nuclear energy to extract more space-spectral features directly and simultaneously in hyperspectral remote sensing images.By connecting branches with residual structure,the problem of gradient disappearing was alleviated and deeper features were extracted.Experiments showed that the proposed algorithm not only improved the edge classification accuracy of strip and linear feature areas,but also enhanced the classification ability of small targets.
作者 苗永庆 赵泉华 孙清 MIAO Yongqing;ZHAO Quanhua;SUN Qing(School of Geomatics,Liaoning Technical University,Fuxin,Liaoning 123000,China)
出处 《测绘科学》 CSCD 北大核心 2023年第2期148-156,184,共10页 Science of Surveying and Mapping
基金 国家自然科学基金青年基金项目(42001286) 辽宁省教育厅重点项目(LJ2020ZD003)。
关键词 3D-CNN Inception模块 残差神经网络 高光谱遥感影像分类 3D-CNN Inception module residual neural network hyperspectral remote sensing image classification
  • 相关文献

参考文献6

二级参考文献34

  • 1赵春霞,钱乐祥.遥感影像监督分类与非监督分类的比较[J].河南大学学报(自然科学版),2004,34(3):90-93. 被引量:88
  • 2春阳,曹鑫,史培军,李京.基于Landsat7 ETM^+全色数据纹理和结构信息复合的城市建筑信息提取[J].武汉大学学报(信息科学版),2004,29(9):800-804. 被引量:12
  • 3靳文戟,刘政凯.多类别遥感图像的复合分类方法[J].环境遥感,1995,10(4):298-302. 被引量:17
  • 4MCLACHLAN G J, BASFORD K E. Mixture Models: Inference and Applications to Clustering [M]. New York: Marcel Dekker, 1988.
  • 5RICHARDS J A, JIA X. Remote Sensing Digital Image Analysis: An Introduction[M]. Berlin:Springer, 1999.
  • 6STEIN A, MEER F, GORTE B. Spatial Statistics for Remote Sensing [M]. New York:Kluwer Academic Publishers, 1999.
  • 7DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum Likelihood Estimation from Incomplete Data via EM Algorithm [J]. J R Statist Soc, 1977, (B39):1-38.
  • 8REDNER R A, WALKER H F. Mixture Densities, Maximum Likelihood and the EM Algorithm [J]. SIAM Review, 1984, 26(2):195-239.
  • 9BRUZZONE L, PRIETO D F, SERPICO S B. A Neural-statistical Approach to Multi-temporal and Multi-source Remote-sensing Image Classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1 350-1 359.
  • 10SCLOVE S C. Application of the Conditional Population Mixture Model to Image Segmentation [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1983, (PAMI-5): 428-433.

共引文献342

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部