期刊文献+

改进鲸鱼算法及其在浅层神经网络搜索中的权值阈值优化 被引量:7

Improved whale optimization algorithm and its weights and thresholds optimization in shallow neural architecture search
原文传递
导出
摘要 为设计出简便高效的方法搜索最优神经网络结构,提出一种改进鲸鱼优化算法的浅层神经网络搜索方法.该方法首先通过模拟鲸鱼狩猎的个体偏好行为和鲸鱼群位置移动的非线性权值更新机制对传统鲸鱼优化算法进行改进;然后将改进鲸鱼优化算法作为浅层BP神经网络结构搜索策略,构建基于浅层BP神经网络的最优网络结构的权值阈值搜索优化方法.数值实验结果表明,改进的鲸鱼优化算法不仅在求解不同维复杂函数上具有良好的寻优性能,而且通过改进鲸鱼优化算法搜索得到的最优浅层BP神经网络结构在回归任务中具有更好的预测精度和泛化性能. In order to design a simple and efficient method to search for the optimal neural network architecture,we propose an improved whale optimization algorithm and its shallow neural architecture search’s weights and thresholds optimization.This method first improves the traditional whale optimization algorithm by simulating the individual preference behavior of whale hunting and the nonlinear weight update mechanism of whale group position movement;Then,the improved whale optimization algorithm is used as a shallow BP neural network architecture search strategy,and a architecture based on the optimization method of weight threshold search for the optimal network architecture of the shallow BP neural network is constructed.The numerical experimental results show that the improved whale optimization algorithm not only has good optimization performance in solving complex functions with different dimensions,but also the optimal shallow BP neural network architecture searched by the improved whale optimization algorithm has better prediction accuracy and generalization performance in regression tasks.
作者 刘威 郭直清 王东 刘光伟 姜丰 牛英杰 马灵潇 LIU Wei;GUO Zhi-qing;WANG Dong;LIU Guang-wei;JIANG Feng;NIU Ying-jie;MA Ling-xiao(College of Science,Liaoning Technical University,Fuxin 123000,China;Institute of Intelligent Engineer and Mathematics,Liaoning Technical University,Fuxin 123000,China;College of Mines,Liaoning Technical University,Fuxin 123000,China)
出处 《控制与决策》 EI CSCD 北大核心 2023年第4期1144-1152,共9页 Control and Decision
基金 国家自然科学基金项目(51974144,51874160) 辽宁省教育厅项目(LJKZ0340) 辽宁工程技术大学学科创新团队项目(LNTU20TD-01,LNTU20TD-07).
关键词 神经网络结构搜索 鲸鱼优化算法 个体偏好选择 马尔可夫链 BP神经网络 神经进化 neural architecture search whale optimization algorithm individual preference choice Markov chain BP neural network neuroevolution
  • 相关文献

参考文献4

二级参考文献25

  • 1冯远静,冯祖仁,彭勤科.一类自适应蚁群算法及其收敛性分析[J].控制理论与应用,2005,22(5):713-717. 被引量:18
  • 2Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 3Dervis Karaboga, Bahriye Akay. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132.
  • 4Guopu Zhu, Sam Kwong. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
  • 5Xu Chunfan, Duan Haibin. Artificial bee colony(ABC) optimized edge potential function(EPF) approach to targetrecognition for low-altitude aircraft[J]. Pattern Recognition Letters, 2010, 31(13): 1759-1772.
  • 6Szeto W Y, Wu Yongzhong, Sin C Ho. An artificial bee colony algorithm for the capacitated vehicle routing problem[J]. European J of Operational Research, 2011, 215(1): 126-135.
  • 7Omkar S N, Senthilnath J, Rahul Khandelwal, et al. Artificial bee colony(ABC) for multi-objective design optimization of composite structures[J]. Applied Soft Computing, 2011, 11(1): 489-499.
  • 8Ming-Huwi Homg. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J]. Expert Systems with Applications, 2011, 38(11): 13785-13791.
  • 9Karaboga D, Ozturk C. A novel clustering approach: artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2011, 11 (I): 652-657.
  • 10Gao Wei-feng, Liu. San-yang. A modified artificial bee colony algorithm[J]. Computers & Operations Research, 2012, 39(3): 687-697.

共引文献109

同被引文献88

引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部