摘要
为设计出简便高效的方法搜索最优神经网络结构,提出一种改进鲸鱼优化算法的浅层神经网络搜索方法.该方法首先通过模拟鲸鱼狩猎的个体偏好行为和鲸鱼群位置移动的非线性权值更新机制对传统鲸鱼优化算法进行改进;然后将改进鲸鱼优化算法作为浅层BP神经网络结构搜索策略,构建基于浅层BP神经网络的最优网络结构的权值阈值搜索优化方法.数值实验结果表明,改进的鲸鱼优化算法不仅在求解不同维复杂函数上具有良好的寻优性能,而且通过改进鲸鱼优化算法搜索得到的最优浅层BP神经网络结构在回归任务中具有更好的预测精度和泛化性能.
In order to design a simple and efficient method to search for the optimal neural network architecture,we propose an improved whale optimization algorithm and its shallow neural architecture search’s weights and thresholds optimization.This method first improves the traditional whale optimization algorithm by simulating the individual preference behavior of whale hunting and the nonlinear weight update mechanism of whale group position movement;Then,the improved whale optimization algorithm is used as a shallow BP neural network architecture search strategy,and a architecture based on the optimization method of weight threshold search for the optimal network architecture of the shallow BP neural network is constructed.The numerical experimental results show that the improved whale optimization algorithm not only has good optimization performance in solving complex functions with different dimensions,but also the optimal shallow BP neural network architecture searched by the improved whale optimization algorithm has better prediction accuracy and generalization performance in regression tasks.
作者
刘威
郭直清
王东
刘光伟
姜丰
牛英杰
马灵潇
LIU Wei;GUO Zhi-qing;WANG Dong;LIU Guang-wei;JIANG Feng;NIU Ying-jie;MA Ling-xiao(College of Science,Liaoning Technical University,Fuxin 123000,China;Institute of Intelligent Engineer and Mathematics,Liaoning Technical University,Fuxin 123000,China;College of Mines,Liaoning Technical University,Fuxin 123000,China)
出处
《控制与决策》
EI
CSCD
北大核心
2023年第4期1144-1152,共9页
Control and Decision
基金
国家自然科学基金项目(51974144,51874160)
辽宁省教育厅项目(LJKZ0340)
辽宁工程技术大学学科创新团队项目(LNTU20TD-01,LNTU20TD-07).
关键词
神经网络结构搜索
鲸鱼优化算法
个体偏好选择
马尔可夫链
BP神经网络
神经进化
neural architecture search
whale optimization algorithm
individual preference choice
Markov chain
BP neural network
neuroevolution