期刊文献+

基于Multiscale CNN的齿痕舌识别研究

Research on teeth-marked tongue recognition based on multiscale convolutional neural network
下载PDF
导出
摘要 齿痕舌是中医舌诊的一个重要指标。建立的多尺度卷积神经网络由多尺度特征图生成、候选区域搜索、目标区域识别模块组成,实现对轻、中、重3种程度齿痕实例分割与目标区域提取。实验结果表明,齿痕实例分割的精确度高,适用于中医智能舌诊系统应用。 Teeth-marked tongue is an important indicator of tongue diagnosis in traditional Chinese medicine.Multiscale convolutional neural network(CNN)model is built,which includes multiscale feature map generation,region proposal searching and target region recognition.As a result,the re-gion instance segmentation of teeth-marked tongue and target region extraction is obtained with light,medium and heavy tooth marks.Results show that the teeth-marked tongue recognition model a-chieved a higher accuracy,which is suitable for the application of the TCM intelligent tongue diagno-sis system.
作者 蒋冬梅 杨诺 王勇 彭成东 JIANG Dongmei;YANG Nuo;WANG Yong;PENG Chengdong(Anhui Technical College of Water Resources and Hydroelectric Power,Hefei 231603,China;Hefei Yunzhen Information Technology Co.,Ltd.,Hefei 230088,China)
出处 《安徽水利水电职业技术学院学报》 2023年第1期48-51,共4页 Journal of Anhui Technical College of Water Resources and Hydroelectric Power
基金 安徽高校自然科学研究重大项目(KJ2020ZD77)。
关键词 齿痕识别 实例分割 语义分割 卷积神经网络 深度学习 teeth-marked tongue instance segmentation semantic segmentation convolutional neural network deep learning
  • 相关文献

参考文献3

二级参考文献33

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部