摘要
齿痕舌是中医舌诊的一个重要指标。建立的多尺度卷积神经网络由多尺度特征图生成、候选区域搜索、目标区域识别模块组成,实现对轻、中、重3种程度齿痕实例分割与目标区域提取。实验结果表明,齿痕实例分割的精确度高,适用于中医智能舌诊系统应用。
Teeth-marked tongue is an important indicator of tongue diagnosis in traditional Chinese medicine.Multiscale convolutional neural network(CNN)model is built,which includes multiscale feature map generation,region proposal searching and target region recognition.As a result,the re-gion instance segmentation of teeth-marked tongue and target region extraction is obtained with light,medium and heavy tooth marks.Results show that the teeth-marked tongue recognition model a-chieved a higher accuracy,which is suitable for the application of the TCM intelligent tongue diagno-sis system.
作者
蒋冬梅
杨诺
王勇
彭成东
JIANG Dongmei;YANG Nuo;WANG Yong;PENG Chengdong(Anhui Technical College of Water Resources and Hydroelectric Power,Hefei 231603,China;Hefei Yunzhen Information Technology Co.,Ltd.,Hefei 230088,China)
出处
《安徽水利水电职业技术学院学报》
2023年第1期48-51,共4页
Journal of Anhui Technical College of Water Resources and Hydroelectric Power
基金
安徽高校自然科学研究重大项目(KJ2020ZD77)。
关键词
齿痕识别
实例分割
语义分割
卷积神经网络
深度学习
teeth-marked tongue
instance segmentation
semantic segmentation
convolutional neural network
deep learning