期刊文献+

超临界二氧化碳压裂井筒温压及相态控制研究 被引量:1

Study on Wellbore Temperature&Pressure and Phase Control in Supercritical Carbon Dioxide Fracturing
下载PDF
导出
摘要 超临界二氧化碳压裂液对温度、压力较为敏感,准确地预测注入过程中的井筒温压及相态直接影响着最终的压裂效果。因此,建立了考虑轴向导热、焦汤效应、膨胀(压缩)做功、摩擦生热热量分配的超临界二氧化碳压裂井筒瞬态温压模型,模拟分析了注入温度、施工排量、降阻效果、油管尺寸对井筒温压及相态的影响。研究结果表明,井筒温度降低导致的二氧化碳密度增加、流速降低,使得井口压力随井底温度同步降低。注入温度越高、施工排量越小、降阻率越高、油管尺寸越大,井底温度越高、井口压力越低。其中,井口温度增加10℃,井底温度增加约为7℃;降阻率提高20%,井口压力降低约7MPa。提高注入温度及流动通道的横截面积、降排量的同时使用稠化剂(降阻剂)可促使二氧化碳在井底达到超临界态。研究成果对超临界二氧化碳压裂的优化设计及现场应用具有较强的指导意义。 Supercritical carbon dioxide fracturing fluid is sensitive to temperature and pressure,and accurate prediction of wellbore temperature,pressure and phase state during fracturing directly affects the final fracturing effect.As a result,a transient wellbore temperature and pressure model of supercritical carbon dioxide fracturing considering axial heat conduction,Joule-Thomson effect,expansion/compression work,and frictional heat was established.Based on the model,the effects of injection temperature,displacement,drag reduction effect,and tubing size on the wellbore temperature,pressure and phase state were analyzed.The results show that the decrease of wellbore temperature leads to an increase in carbon dioxide density and a decrease in flow velocity,which causes the wellhead pressure to decrease simultaneously with the wellbore temperature.The higher the injection temperature,the smaller the displacement,the higher the resistance reduction rate,the larger the tubing size,the higher the bottom hole temperature,and the lower the wellhead pressure.Among them,the wellhead temperature increases by 10C,and the bottom hole temperature increases by about 7C;the resistance reduction rate increases by 20%,and the wellhead pressure decreases by about 7 MPa.Increasing the injection temperature,the cross-sectional area of the flow channel,and reducing the displacement while using the thickener/resistance reducer can promote the carbon dioxide to reach the supercritical state at the bottom of the well.This article has strong guiding significance for the optimization design and field application of supercritical carbon dioxide fracturing.
作者 吴林 罗志锋 赵立强 姚志广 贾宇成 WU Lin;LUO Zhifeng;ZHAO Liqiang;YAO Zhiguang;JIA Yucheng(State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu,Sichuan 610500,China;Southwest Oil&Gas Field Company,PetroChina,Chengdu,Sichuan 610051,China)
出处 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期117-125,共9页 Journal of Southwest Petroleum University(Science & Technology Edition)
基金 国家自然科学基金面上项目(51974264)。
关键词 超临界二氧化碳 压裂 井筒 瞬态温度压力 相态控制 supercritical carbon dioxide fracturing wellbore transient temperature and pressure phase state control
  • 相关文献

参考文献6

二级参考文献70

  • 1雷群,李宪文,慕立俊,姬振宁,王小朵,马旭.低压低渗砂岩气藏CO_2压裂工艺研究与试验[J].天然气工业,2005,25(4):113-115. 被引量:17
  • 2张勇,唐人选.CO_2井筒压力温度的分布[J].海洋石油,2007,27(2):59-64. 被引量:14
  • 3陈家琅,陈涛平.石油气液两相管流[M].北京:石油工业出版社,2010.
  • 4l.eblane D P, Martel T, Graves I) G, el al. Application of propane (LPG) based hydraulic fracturing in the McCully gas field, New Brunswick,Canada[R]. SPE 144093,2011.
  • 5Campbell S M, Fairchild Jr. N R, Arnold D L. Liquid CO2 and sand stimulations in the lewis shale, San Juan Basin. New Mexico:a case study[R]. SPE 60317,2000.
  • 6Stidham J E, Tetrick t. T, Glenn S A. Nilrogen coiled-tubing fracturing in the Appalachian Basin[R]. SPE 72382,2001.
  • 7Gottschling J C,Royce T N. Nitrogen gas and sand:a new tech- nique for stimulation of Devonian shale[J]. Journal of Petroleum Technology,1985,37(5) :901-907.
  • 8Ishida T, Aoyagi K, Niwa T, et al. Acoustic emission monitoring of hydi'aulie fracturing laboratory experiment with supercritieal and liquid CO2 [ J]. Geophysical Research Letters, 2012,39 (16) 1-6.
  • 9Brown D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water:proceedings of Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford, Janu- ary 24-26,2000[C]. Stanford, Stanford University, 2000.
  • 10Ramey Jr. H J. Wellbore heat transmission[J]. Journal of Petro- leum Technology, 1962,14(4) :427-435.

共引文献70

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部