期刊文献+

基于Q-Learning算法的无人机空战机动决策研究

Research on UAV Air Combat Maneuver DecisionBased on Q-Learning Algorithm
下载PDF
导出
摘要 针对无人机空战对抗自主机动决策问题,设计了侧向机动决策算法。通过加入启发式因子的方式和双Q表交替学习的机制,弥补了传统Q-Learning算法学习速度慢、无效学习多的不足。通过路径规划仿真和数据的对比,验证了改进Q-Learning算法具有更好的稳定性和求解能力。设计了动态的栅格规划环境,能够使无人机根据变化的空战态势自适应调整栅格尺寸大小,且对求解的速率不产生影响。基于Q-Learning算法,构建了无人机空战对抗侧向机动决策模型,并通过武器平台调换的方式验证了改进Q-Learning算法能显著提升无人机空战胜负比。 Aiming at the autonomous maneuver decision-making problem of UAV air combat,a lateral maneuver decision-making algorithm is designed.By adding heuristic factors and double Q-table alternating learning mechanism,the shortcomings of traditional Q-Learning algorithm,such as slow learning speed and many ineffective learning,are overcome.Through path planning simulation and the comparison of data,it is verified that the improved Q-Learning algorithm has better stability and solving ability.A dynamic grid planning environment is designed,which can make the UAV adjust the grid size adaptively according to the changing of air combat situation,and has no impact on the solution rate.Based on the Q-Learning algorithm,the lateral maneuver decision-making model of UAV air combat is constructed,and it is verified that the improved Q-Learning algorithm can play a significant role in improving the winning/losing ratio of UAV air combat through the exchange of weapon platforms.
作者 姚培源 魏潇龙 俞利新 李胜厚 YAO Peiyuan;WEI Xiaolong;YU Lixin;LI Shenghou(Air Traffic Control and Navigation College,Air Force Engineering University,Xi'an 710000,China)
出处 《电光与控制》 CSCD 北大核心 2023年第5期16-22,共7页 Electronics Optics & Control
关键词 无人机 空战 机动决策 动态栅格环境 路径规划 双Q-Learning学习表算法 UAV air combat maneuver decision-making dynamic grid environment path planning double Q-Learning table algorithm
  • 相关文献

参考文献9

二级参考文献86

  • 1傅莉,王晓光.无人战机近距空战微分对策建模研究[J].兵工学报,2012,33(10):1210-1216. 被引量:20
  • 2贾林,顾爽,陈启军.基于图像视觉伺服的移动机器人自主导航实现[J].华中科技大学学报(自然科学版),2011,39(S2):220-222. 被引量:7
  • 3于睿箭,冯允成.影响图的基础理论和发展[J].北京航空航天大学学报,1994,20(4):429-435. 被引量:11
  • 4高峰,黄玉美,林义忠,刘鸿雁,史恩秀.自主移动机器人的模糊智能导航[J].西安理工大学学报,2005,21(4):337-341. 被引量:5
  • 5Cruz J B,Simaan M A, Gacic A, et al. Game-theoretic modelingand control of a military air operation[J]. IEEE Trans, on Aero-space and Electronic Systems ,2001 , 37(4) : 1393 - 1405.
  • 6Liu Y, Simaan M A, Jr J B C. An application of dynamic nashtask assignment strategies to multi-team military air operations[J]. Automatica, 2003, 39(8) : 1469 - 1478.
  • 7Darrah M. UAV cooperative task assignments for a SEAD missionusing genetic algorithms[C] // Proc. of the AIAA Guidance, Navi-gantion,and Control Conference and Exhibit ,2006 : 1-9.
  • 8Galati D G,Simaan M A. Effectiveness of the nash strategies incompetitive multi-team target assignment probLems[Jl. Transactionsof Aerospace and Electronic Systems ,2007, 43(1) : 126 - 134.
  • 9Xin B,Chen J Juan Z,et al. Efficient decision makings for dynam-ic weapon-target assignment by virtual permutation and tabu searchheuristics[Jj. IEEE Trans . on Systems,Man and Cybernetics,PartC: Applications and Reviews, 2010, 40(6) : 649 - 662.
  • 10Xin B, Chen J,Peng Z, et al. An efficient rule-based construc-tive heuristic to solve dynamic weapon-target assignment prob-lem[J]. IEEE Trans, on Systems , Man and Cybernetics,PartA: Systems and Humans 2011. 41(3) : 598 -606.

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部