期刊文献+

大庆油田古龙页岩岩屑在幂律流体中的沉降阻力系数研究 被引量:1

The Settlement Drag Coefficient of Gulong Shale Cuttings in Power-Law Fluids in Daqing Oilfield
下载PDF
导出
摘要 大庆油田古龙页岩油开发大多采用长水平段水平井,但长水平段水平井钻井过程中,岩屑易在井筒内自由沉降而形成岩屑床,导致沉砂卡钻等井下故障,因此需要研究岩屑颗粒的沉降规律,优化钻井液性能及水力参数,确保井眼清洁。为此,利用可视化的试验装置和高速摄像机,系统记录了试验中颗粒在幂律流体中的沉降行为,获得了196组球形颗粒和224组不规则形状岩屑在幂律流体中自由沉降的试验数据。采用一种依赖于沉降颗粒受力平衡的力学模型对试验数据进行统计分析,建立了幂律流体中球形颗粒阻力系数预测模型。在此基础上,引入二维形状描述参数,建立了幂律流体中不规则形状岩屑阻力系数预测模型。该模型预测准确性较高,平均相对误差仅6.93%,能够满足钻井工程中预测岩屑沉降速度的需求。 Horizontal wells with long horizontal sections are mostly adopted in developing the Gulong shale oil in Daqing Oilfield.However,during the drilling process of the horizontal wells with long horizontal sections,the broken cuttings in the borehole annulus easily settle freely in wellbore drilling fluids to form cuttings beds.In order to avoid downhole failures such as sand sinking and sticking caused by cuttings deposition,it is necessary to study the settlement law of cuttings particles and predict the final velocity of cuttings settlement.In this paper,the settlement behavior of particles in power-law fluids was systematically recorded by visual devices and high-speed cameras during experiments.The experimental data from the free settlement of 196 groups of spherical particles and 224 groups of irregularly shaped cuttings in the power-law fluids were obtained.A mechanical model dependent on the force balance of settling particles was adopted,and the experimental data were analyzed in detail.A model for predicting the drag coefficient of spherical particles in the power-law fluids was established.On this basis,a two-dimensional shape description parameter was introduced to establish a model for predicting the drag coefficient of irregularly shaped cuttings in the power-law fluids.The prediction model showed high accuracy,and the average relative error was only 6.93%.Therefore,the model can meet the need of predicting cuttings settling velocity in drilling engineering.
作者 王庆 张佳伟 孙铭浩 纪国栋 汪海阁 孙晓峰 WANG Qing;ZHANG Jiawei;SUN Minghao;JI Guodong;WANG Haige;SUN Xiaofeng(CNPC Engineering Technology R&D Company Limited,Beijing,102206,China;School of Petroleum Engineering,Northeast Petroleum University,Daqing,Heilongjiang,163318,China)
出处 《石油钻探技术》 CAS CSCD 北大核心 2023年第2期54-60,共7页 Petroleum Drilling Techniques
基金 中国石油科学研究与技术开发项目“大庆古龙页岩油勘探开发理论与关键技术研究”(编号:2021ZZ10-03) 中国博士后科学基金资助项目“钻柱中应力分布差异对声传播特性的影响规律研究”(编号:2021M693508) 中国石油集团工程技术研究院有限公司青年基金项目“地层孔隙压力测量技术研究”(编号:CPETQ202116)、中国石油集团科学研究与技术开发项目“万米超深层油气资源钻完井关键技术与装备研究”(编号:2022ZG06) 中国石油直属院所基础研究和战略储备技术研究基金项目“地层压力-井筒环境交互响应机制与随钻自适应测量方法研究”(编号:2021DQ03-17)联合资助。
关键词 页岩 岩屑沉降 阻力系数 幂律流体 井眼清洁 古龙凹陷 大庆油田 shale shale cuttings settlement drag coefficient power-law fluid borehole cleaning Gulong Sag Daqing Oilfield
  • 相关文献

参考文献8

二级参考文献71

  • 1汪海阁,刘希圣.屈服—假塑性流体轴向层流流场分析[J].中国海上油气(工程),1994,6(5):35-41. 被引量:1
  • 2崔海清,刘希圣.非牛顿流体偏心环形空间螺旋流的速度分布[J].石油学报,1996,17(2):76-83. 被引量:29
  • 3Batchelor, G. B. (1970). Slender-body theory for particles of arbitrary cross-section in Stokes flow.Journal of Fluid Mechanics, 44, 419-440.
  • 4Chhabra, R. P,, Agarwal, L., & Sinha, N. K. (1999), Drag on non-spherical particles: An evalution of available methods. Powder Technology, 101,288-295.
  • 5Holzer, A., & Sommerfeld, M. (2008). New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184, 361-365.
  • 6Holzer, A., & Sommerfeld, M. (2009). Lattice Boltzmann si'mulations to determine drag, lift and torque acting on non-spherical particles. Computers & Fluids, 38, 572-589.
  • 7Jones, A, M., & Knudsen, J. G. (1961). Drag coefficients at low Reynolds numbers for flow past immersed bodies.AlChE.Journal, 7, 20-25.
  • 8Lin, J. Z.,'Zhang, W. F., & Yu, Z. S. (2604). Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows.Journal of Aerosol Science, 35(1), 63-82.
  • 9Madhav, G. V., & Chhabra, R. P. (1995). Drag on non-spherical particles in viscous fluids. International Journal of Mineral Processing, 43, 15-29.
  • 10Marchildon, E. K., Clamen, A., & Gauvin, W. H. (1964). Drag and oscillatory motion of freely falling cylindrical particles. The Canadian Joumal of Chemical Engineering, 42, 178-182.

共引文献157

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部