摘要
为了在不确定性情况下提高云医疗物联网资源调度及负载的均衡,在研究系统不确定模型、遗传算法和贪心算法基础上,设计一种基于改进遗传算法的云物联网资源调度方案。通过将本文所提算法与GA、Min-Min和FCFS比较,所提算法减少了总体执行时间,以最小的定价成本实现不确定性下医疗物联网云资源上的负载均衡。
In order to improve the medical Internet of Things resource scheduling and load balancing problem by cloud technology under uncertainty,a cloud resource scheduling scheme with Internet of Thingsis is designed based on improved genetic algorithm and system uncertainty model,genetic algorithm and greedy algorithm.In the comparing simulation experiment for the proposed algorithm with GA,Min-Min and FCFS,the results show that the proposed algorithm reduces the overall execution time and achieves the load balancing of medical IoT cloud resources under uncertainty with the minimum pricing cost.
作者
郑海锋
邹全
黄淮裕
张绮雯
ZHENG Haifen;ZOU Quan;HUANG Huaiyu;ZHANG Qiwen(Meizhou People’s Hospital,Meizhou 514031,China)
出处
《微型电脑应用》
2023年第4期87-90,共4页
Microcomputer Applications
关键词
医疗物联网
负载均衡
不确定性模型
改进遗传算法
medical Internet of Things
load balancing
uncertainty model
improved genetic algorithm