期刊文献+

Deep learning models for automatic identification of plant-parasitic nematode 被引量:1

原文传递
导出
摘要 Plant-parasitic nematodes cause various diseases that can be fatal to the infected plants.It causes losses to the agricultural industry,such as crop failure and poor crop quality.Developing an accurate nematode classification system is vital for pest identification and control.Deep learning classification techniques can help speed up Nematode identification as it can perform tasks directly from images.In the present study,four state-of-the-art deep learning models(ResNet101v2,CoAtNet-0,Effi-cientNetV2B0,and EfficientNetV2M)were evaluated in plantparasitic nematode classification from microscopic image.The models were trained using a combination of three different optimizers(Adam,SGD,dan RMSProp)and several data augmentation with image transformations,such as image flip,blurring,noise addition,brightness,and contrast adjustment.The performance of the trained models was varied.Regarding test accuracy,EfficientNetV2B0 and EfficientNetV2M using RMSProp and brightness augmentation give the best result of 97.94%However,the overall performance of EfficientNetV2M was superior,with 98.66%mean class accuracy,97.99%F1 score,98.26%average precision,and 97.94%average recall.
出处 《Artificial Intelligence in Agriculture》 2023年第1期1-12,共12页 农业人工智能(英文)
  • 相关文献

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部