摘要
旅游网站上有着数不胜数的景点信息,但是对新用户来说,网站缺少他们的浏览记录、旅游经历等数据,因此很难从众多景点中精确推荐出适合他们的景点。本研究提出了一种通过标签挖掘和聚类算法快速构建新用户兴趣模型的方法,以提高旅游推荐系统中新用户的用户体验感。
There are countless tourism information on various travel websites,however,the lack of user data such as browsing history or travel experience makes it difficult to recommend the right point of interest for new users.In this paper,a method to quickly build a new user interest model using tag mining techniques and clustering algorithm is proposed to improve the user experience of new users in the travel recommendation system.
作者
黄宇浩
顾得豪
胡炎林
周子楚
朱津毅
宋爽
Huang Yuhao;Gu Dehao;Hu Yanlin;Zhou Zichu;Zhu Jinyi;Song Shuang(Nanjing University of Technology,School of Computer Science and Technology,Nanjing,Jiangsu 211816,China)
出处
《计算机时代》
2023年第5期88-90,共3页
Computer Era
基金
江苏省大学生创新创业训练计划项目(202210291173Y)。
关键词
旅游推荐
冷启动
网络文本挖掘
用户聚类
tourism recommendation
cold start
online text mining
user clustering