期刊文献+

基于PSO的RF模型在人体活动识别中的应用

Application of RF model based on PSO in human activity recognition
下载PDF
导出
摘要 提出一种基于粒子群优化(PSO)的随机森林(RF)识别方法。利用PSO算法搜寻最优的RF超参数n_estimators和max_depth,构建了PSO-RF人体活动识别模型。基于华盛顿州立大学CASAS项目数据集的实验共识别30种日常活动。仿真结果表明,PSO-RF模型的识别准确率达到95%,Accuracy、Precision、Recall和F1-score评价指标均优于其他经典的分类模型,具有较好的预测精度和泛化能力,可为智能家居系统个性化服务提供辅助决策。 In this paper,an RF recognition method based on PSO is proposed.Using PSO algorithm to search for the optimal RF hyper-parameters n_estimators and max_depth,the PSO-RF human activity recognition model is constructed.An experiment is conducted on the CASAS project dataset of Washington State University,and a total of 30 daily activities are identified.The simulation results show that the recognition accuracy of the PSO-RF model reaches 95%,and the evaluation indicators of Accuracy,Precision,Recall and F1-score are superior to other classic classification models.It has good prediction accuracy and generalization ability,and can provide auxiliary decision-making for personalized service of smart home system.
作者 倪洪科 王斌 王英超 高慧敏 Ni Hongke;Wang Bin;Wang Yingchao;Gao Huimin(School of Computer Science and Technology,Zhejiang Sci-Tech University,Hangzhou,Zhejiang 310018,China;School of Information Science and Engineering,Jiaxing University;Suzhou Lanhepenbo Intelligent Technology Co.,Ltd)
出处 《计算机时代》 2023年第5期131-135,共5页 Computer Era
基金 住房和城乡建设部2022年科学技术计划项目(2022-K-104) 嘉兴市公益性研究计划项目(2020AY10012)。
关键词 随机森林 粒子群优化 人体活动识别 传感数据 random forest(RF) particle swarm optimization(PSO) human activity recognition sensor data
  • 相关文献

参考文献5

二级参考文献35

  • 1经怀明,张立军.多车型车辆调度问题的建模与仿真[J].计算机仿真,2006,23(4):261-264. 被引量:23
  • 2Zhang Zehua,Zhang Xuejie.A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation[C] //2010 2nd International Conference on Industrial Mechatronics and Automation,2012,20(4):54-62.
  • 3Bhadani A.LBVS:a load balancing strategy for virtual storage[C] //2011 IEEE International Conference on Service Sciences,2011,22(6):26-39.
  • 4Zhang Bo,Gao Ji,Ai Jieqing.Cloud loading balance algorithm[C] //ICISE,2010:5001-5004.
  • 5Chaudhary S.Adaptive distributed load balancing algorithm based on live migration of virtual machines in cloud[C] //2009 5th International Joint Conference on INC,IMS and IDC,2011,6(5):33-46.
  • 6Chang Guiran,Wang Chuan,Xiong Yu,et al.Efficient Nash equilibrium based cloud resource allocation by using a continuous double auction[C] //2012 International Conference on Computer Design and Applications,2010:194-199.
  • 7Zhang Q H,Alber B.Wavelet networks[J].IEEE Transactions of Neural Networks,1992,6(11):889-898.
  • 8Arneodo A,Grasseau G,Holschneider M.Wavelet transform of multifractals[J].Physical Rev Let,1988,61(20):2281-2283.
  • 9薛丽萍,尹俊勋,纪震.基于粒子群优化-模糊聚类的说话人识别[J].深圳大学学报(理工版),2008,25(2):178-183. 被引量:8
  • 10阳春华,谷丽姗,桂卫华.自适应变异的粒子群优化算法[J].计算机工程,2008,34(16):188-190. 被引量:51

共引文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部