期刊文献+

北京某高校教室自然通风下新冠感染概率实验和模拟研究

Experimental and simulation study on infection rate of SARS-CoV-2 under natural ventilation in classrooms of a university in Beijing
下载PDF
导出
摘要 采用实验和模拟的方法研究了北京某高校教室中学生新冠感染概率的问题。运用Wells-Riley模型计算得出:当量子生成率(quanta值)从14增加到48时,关窗条件下教室人员感染概率从11.22%提高至33.44%,开窗条件下感染概率从5.73%提高至18.37%;换气次数增加至12 h-1时,感染概率为0.51%。利用佩戴口罩模型计算感染概率,关窗条件下不佩戴口罩吸入病毒感染概率为54.79%,佩戴口罩时为13.7%;开窗条件下不佩戴口罩吸入病毒感染概率为29.89%,佩戴口罩时为7.47%。在短时间暴露情况下,关窗条件下佩戴口罩时感染概率降低至23.41%,开窗条件下降低至15.45%,采用机械通风将换气次数增加到5 h-1时,佩戴口罩感染概率降低至0.2%,有效降低了感染概率。 Experimental and simulation methods are used to study the SARS-CoV-2 infection rate of students in classrooms of a university in Beijing.The Wells-Riley model is used to calculate and obtain that when the quantum generation rate(quanta)increases from 14 to 48,the infection rate of classroom personnel increases from 11.22%to 33.44%under window closing condition,and from 5.73%to 18.37%under window opening condition.The infection rate is 0.51%when the air change rate is increased to 12 h-1.Using the wearing mask model to calculate the infection rate,when the window is closed,the infection rate of inhaling the virus is 54.79%without a mask and 13.7%with a mask.When the window is open,the infection rate of inhaling the virus is 29.89%without a mask and 7.47%with a mask.In the case of short exposure,when the mask is worn,the infection rate is reduced to 23.41%under window closing condition and 15.45%under window opening condition,and the infection rate is reduced to 0.2%when the air change rate is increased to 5 h-1 by mechanical ventilation,which effectively reduces the infection rate.
作者 陈红兵 王文谦 王聪聪 郑婷婷 李璊 陈亮 Chen Hongbing;Wang Wenqian;Wang Congcong;Zheng Tingting;Li Men;Chen Liang(Beijing University of Civil Engineering and Architecture,Beijing;China Southwest Architecture Design and Research Institute Co.,Ltd.,Chengdu)
出处 《暖通空调》 2023年第5期124-129,135,共7页 Heating Ventilating & Air Conditioning
关键词 新型冠状病毒 感染概率 Wells-Riley模型 佩戴口罩模型 自然通风 换气次数 SARS-CoV-2 infection rate Wells-Riley model wearing mask model natural ventilation air change rate
  • 相关文献

参考文献5

二级参考文献45

  • 1赵彬.室内颗粒运动和分布的模拟方法[J].建筑热能通风空调,2006,25(5):51-58. 被引量:12
  • 2Gonzalez J C.Bio-terrorism,"dirty bombs," hospitals,and security issues[J].J Healthc Prot Manage,2004,20(2):55-59.
  • 3Gruber P C,Gomersall C D,Joynt G M.Avian influenza(H5N1):implications for intensive care[J].Intensive Care Medicine,2006,32(6):823-829.
  • 4World Health Organization.WHO report 2006 global tuberculosis control:surveillance,planning,financing [R].Geneva:WHO,1970.
  • 5Li Y,Leung G M,Tang J W,et al.Role of ventilation in airborne transmission of infectious agents in the built environment—a multidisciplinary systematic review[J].Indoor Air,2007,17(1):2-18.
  • 6Allenby B,Fink J.Toward inherently secure and resilient societies[J].Science,2005,309(5737):1034-1036.
  • 7Snodgrass M E.World epidemics:a cultural chronology of disease from prehistory to the era of SARS[M].London:McFarland & Company,2003.
  • 8Ayliffe G A J,English M M P.Hospital infection:from miasmas to MRSA[M].Cambridge,England:Cambridge University Press,2003:274.
  • 9Langmuir A D.Airborne infection:how important for public health? Ⅰ.a historical review[J].Am J Public Health Nations Health,1964,54(10):1666-1668.
  • 10Wells W F.On airborne infection study Ⅱ.droplets and droplet nuclei[J].American Journal of Hygiene,1934,20(3):619-627.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部