期刊文献+

基于贝叶斯攻击图的SDN入侵意图识别算法的研究 被引量:6

Study of SDN intrusion intent identification algorithm based on Bayesian attack graph
下载PDF
导出
摘要 针对目前已有的软件定义网络(SDN)安全预测方法中未考虑攻击代价以及控制器漏洞对SDN安全所产生的影响,提出了一种基于贝叶斯攻击图的SDN入侵意图识别算法。利用PageRank算法求出设备关键度,并与漏洞价值、攻击成本、攻击收益以及攻击偏好相结合构建攻击图,建立风险评估模型,对入侵路径进行预测。通过实验对比可以看出,所提模型能更准确地预测入侵路径,有效地保证安全预测的准确性,并为SDN的防御提供依据。 Since the existing software defined network(SDN)security prediction methods do not consider the attack cost and the impact of controller vulnerabilities on SDN security,a Bayesian attack graph-based algorithm to assessing SDN intrusion intent was proposed.The PageRank algorithm was used to obtain the criticality of the device,and combining with the vulnerability value,attack cost,attack benefit and attack preference,an attack graph was constructed,and a risk assessment model was established to predict the intrusion path.Through experimental comparison,it is obvious that the proposed model can more accurately predict the intrusion path,effectively ensure the accuracy of security prediction,and provide a basis for SDN defense.
作者 罗智勇 张玉 王青 宋伟伟 LUO Zhiyong;ZHANG Yu;WANG Qing;SONG Weiwei(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
出处 《通信学报》 EI CSCD 北大核心 2023年第4期216-225,共10页 Journal on Communications
基金 黑龙江省自然科学基金资助项目(No.LH2021F030)。
关键词 SDN安全预测 入侵意图 攻击图 PAGERANK算法 SDN security prediction intrusion intention attack graph PageRank algorithm
  • 相关文献

参考文献8

二级参考文献50

  • 1王辉,刘淑芬.一种可扩展的内部威胁预测模型[J].计算机学报,2006,29(8):1346-1355. 被引量:22
  • 2Phillips C, Swiler L P. A graph-hased system for network- vulnerability analysis [C] //Proc of the 1998 Workshop on New Security Paradigms. New York: ACM, 1998:71-79.
  • 3Swiler L P, Phillips C, Ellis D, et al. Computerattack graph generation tool [C] //Proe of DARPA Information Survivability Conf. Piscataway, NJ: IEEE, 2001: 307-321.
  • 4Jha S, Sheyner O, Wing J. Two formal analyses of attack graphs [C] //Proc of Computer Security Foundations Workshop. Piscataway, NJ: IEEE, 2002: 49-63.
  • 5Ammann P, Wijesekera D, Kaushik S. Scalable, graph- based network vulnerability analysis [C] //Proc of the 9th ACM Conf on Computer and Communications Security. New York: ACM, 2002:217-224.
  • 6Sheyne O, Haines J, Jha S, et al. Automated generation and analysis of attack graphs [C] //Proc of IEEE Syrup on Security and Privacy. Los Alamitos, CA: IEEE Computer Sciety, 2002:273-284.
  • 7Wang Lingyu, Yao Chao, Singhal A, et al. Interactive analysis of attack graphs using relational queries [C] //Proc of the 20th Annual IFIP Working Conf on Data Applications Security. Berlin: Springer, 2006:119-132.
  • 8Ingols K, Chu M, Lippmann R, et al. Modeling modern network attacks and counter measures using attack graphs [C] //Proc of Computer Security Applications Conf. Piscataway, NJ: IEEE, 2009:117-126.
  • 9Dantu R, Loper K, Kolan L. Risk management using behavior based attack graphs [C] //Proc of Int Conf Information Technology: Coding and Computing. Piscataway, NJ: IEEE, 2004: 445-449.
  • 10Liu Y, Man H. Network vulnerability assessment using Bayesian networks [C] //Proc of SPIE 5812: Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security. Bellingham: SHE, 2005: 61-71.

共引文献60

同被引文献56

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部