期刊文献+

Deep Learning-Enabled Brain Stroke Classification on Computed Tomography Images 被引量:1

下载PDF
导出
摘要 In the field of stroke imaging, deep learning (DL) has enormousuntapped potential.When clinically significant symptoms of a cerebral strokeare detected, it is crucial to make an urgent diagnosis using available imagingtechniques such as computed tomography (CT) scans. The purpose of thiswork is to classify brain CT images as normal, surviving ischemia or cerebralhemorrhage based on the convolutional neural network (CNN) model. In thisstudy, we propose a computer-aided diagnostic system (CAD) for categorizingcerebral strokes using computed tomography images. Horizontal flip datamagnification techniques were used to obtain more accurate categorization.Image Data Generator to magnify the image in real time and apply anyrandom transformations to each training image. An early stopping method toavoid overtraining. As a result, the proposed methods improved several estimationparameters such as accuracy and recall, compared to other machinelearning methods. A python web application was created to demonstrate theresults of CNN model classification using cloud development techniques. Inour case, the model correctly identified the drawing class as normal with 79%accuracy. Based on the collected results, it was determined that the presentedautomated diagnostic system could be used to assist medical professionals indetecting and classifying brain strokes.
出处 《Computers, Materials & Continua》 SCIE EI 2023年第4期1431-1446,共16页 计算机、材料和连续体(英文)
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部