摘要
License plate recognition technology use widely in intelligent trafficmanagement and control. Researchers have been committed to improving thespeed and accuracy of license plate recognition for nearly 30 years. This paperis the first to propose combining the attention mechanism with YOLO-v5and LPRnet to construct a new license plate recognition model (LPR-CBAMNet).Through the attention mechanism CBAM(Convolutional Block AttentionModule), the importance of different feature channels in license platerecognition can be re-calibrated to obtain proper attention to features. Forceinformation to achieve the purpose of improving recognition speed andaccuracy. Experimental results show that the model construction methodis superior in speed and accuracy to traditional license plate recognitionalgorithms. The accuracy of the recognition model of the CBAM model isincreased by two percentage points to 97.2%, and the size of the constructedmodel is only 1.8 M, which can meet the requirements of real-time executionof embedded low-power devices. The codes for training and evaluating LPRCBAM-Net are available under the open-source MIT License at: https://github.com/To2rk/LPR-CBAM-Net.
基金
supported in part by the Natural Science Foundation of Hainan Province under Grant 621MS017
the National Natural Science Foundation of China under Grant U19B2044.