期刊文献+

车床主轴温度测量及基于神经网络的热误差预测

Temperature Measurement of Lathe Spindle and Thermal Error Prediction Based on Neural Network
下载PDF
导出
摘要 在精密加工中,热误差对加工精度的影响不容忽视。为了精准预测热误差对车床主轴的影响,文章基于Arduino设计了温度测量系统,并配合千分表测量了主轴径向圆跳动随温度的变化情况。根据测量数据采用BP神经网络建立了车床主轴径向跳动热误差模型,通过该预测模型的结果可以采用BP神经网络来对车床主轴径向跳动热误差来进行分析预测。 In precision machining,the influence of thermal error on machining accuracy cannot be ignored.In order to accurately predict the influence of thermal error on the lathe spindle,a temperature measurement system is designed based on Arduino,and the variation of the radial runout of the main shaft with temperature change is measured using a dial indicator.Based on the measured data,a thermal error model of lathe spindle radial runout is established using BP neural network.The results of the prediction model can be used to analyze and predict the thermal error of lathe spindle radial runout using BP neural network.
作者 梁艳 LIANG Yan(Xi'an Siyuan University,Xi'an 710038,China)
机构地区 西安思源学院
出处 《现代信息科技》 2023年第7期147-150,153,共5页 Modern Information Technology
基金 陕西省教育厅专项科研计划项目(17JK1075)。
关键词 热误差 加工精度 BP神经网络 thermal error machining accuracy BP neural network
  • 相关文献

参考文献10

二级参考文献63

  • 1傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 2李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38
  • 3李永祥,杨建国,郭前建,王秀山,沈金华.数控机床热误差的混合预测模型及应用[J].上海交通大学学报,2006,40(12):2030-2033. 被引量:28
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 5[2]Dayhoff J E,Deleo J M.Artificial neural networks[J].Cancer,2001,9l(8):1615-1634.
  • 6RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-a review: Part II: Thermal errors[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1257-1284.
  • 7YANG S, YUAN J, NI J. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network[J]. International Journal of Machine Tools and Manufacture, 1996, 36(4): 527-537.
  • 8MIZE C D, ZIEGERT J C. Neural network thermal error compensation of a machining center[J]. Precision Engineering, 2000, 24(4): 338-346.
  • 9YANG Hong, NI Jun. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4-5): 455-465.
  • 10SHEN Jinhua, YANG Jianguo. Application of partial least squares neural network in thermal error modeling for CNC machine tool[J]. Key Engineering Materials, 2009, 392: 30-34.

共引文献511

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部