期刊文献+

Construction of phosphorus-doping with spontaneously developed selenium vacancies: Inducing superior ion-diffusion kinetics in hollow Cu_(2)Se@C nanospheres for efficient sodium storage

下载PDF
导出
摘要 Achieving high-efficiency sodium storage in metal selenides is still severely constrained in consideration of their inferior electronic conductivity and inadequate Na^(+)insertion pathways and active sites.Heteroatom doping accompanied by spontaneously developed lattice defects can effectively tune electronic structure of metal selenides,which give a strong effect to motivate fast charge transfer and Na^(+)accessibility.Herein,we finely designed and successfully constructed a fascinating phosphorus-doped Cu_(2)Se@C hollow nanosphere with abundant vacancy defects(Cu_(2)P_(x)Se_(1-x)@C)through a combination strategy of selenization of Cu_(2)O nanosphere template,self-polymerization of dopamine,and subsequent phosphorization treatment.Such exquisite composite possesses enriched active sites,superior conductivity,and sufficient Na^(+)insertion channel,which enable much faster Na^(+)diffusion rates and more remarkable pseudocapacitive features,Satisfyingly,the Cu_(2)P_(x)Se_(1-x)@C composites manifest the supernormal sodium-storage capabilities,that is,a reversible capacity of 403.7 mA h g^(-1) at 1.0 A g^(-1) over 100 cycles,and an ultrastable cyclic lifespan over 1000 cycles at 20.0 A g^(-1) with a high capacity-retention of about249.7 mA h g^(-1).The phase transformation of the Cu_(2)P_(x)Se_(1-x)@C involving the intercalation of Na^(+)into Cu_(2)Se and the following conversion of NaCuSe to Cu and Na2Se were further demonstrated through a series of ex-situ characterization methods.DFT results demonstrate that the coexistence of phosphorusdoping and vacancy defects within Cu_(2)Se results in the reduction of Na^(+)adsorption energy from-1.47to-1.56 eV improving the conductivity of Cu_(2)Se to further accelerate fast Na^(+)mobility.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期227-238,I0007,共13页 能源化学(英文版)
基金 supported by the China Postdoctoral Science Foundation(Nos.2021M690534 and 2020M673650) the Science and Technology Research Program of Chongqing Municipal Education Commission(Nos.KJQN202101439 and KJQN202101441) the Innovation Research Team at Institutions of Higher Education in Chongqing(No.CXQT20027) the Program for Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province(No.2022FTSZ02)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部