期刊文献+

Simultaneous generation of electricity, ethylene and decomposition of nitrous oxide via protonic ceramic fuel cell membrane reactor

下载PDF
导出
摘要 Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of ethane(NDE)to ethylene,is an emerging and promising route,promoting the transformation of the ethylene industry from energy-intensive steam cracking process to new electrochemical membrane reactor technology.In this work,the NDE reaction is incorporated into a BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)electrolyte-supported protonic ceramic fuel cell membrane reactor to co-generate electricity and ethylene,utilizing the Nb and Cu doped perovskite oxide Pr_(0.6)Sr_(0.4)Fe_(0.8)Nb_(0.1)Cu_(0.1)O_(3-δ)(PSFNCu)as anode catalytic layer.Due to the doping of Nb and Cu,PSFNCu was endowed with high reduction tolerance and rich oxygen vacancies,showing excellent NDE catalytic performance.The maximum power density of the assembled reactor reaches 200 mW cm^(-2)at 750℃,with high ethane conversion(44.9%)and ethylene selectivity(92.7%).Moreover,the nitrous oxide decomposition was first coupled in the protonic ceramic fuel cell membrane reactor to consume the permeated protons.As a result,the generation of electricity,ethylene and decomposition of nitrous oxide can be simultaneously obtained by a single reactor.Specifically,the maximum power density of the cell reaches 208 mW cm^(-2)at 750℃,with high ethane conversion(45.2%),ethylene selectivity(92.5%),and nitrous oxide conversion(19,0%).This multi-win technology is promising for not only the production of chemicals and energy but also greenhouse gas reduction.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期359-368,I0010,共11页 能源化学(英文版)
基金 funding from the National Key R&D Program of China(2020YFB1505603) the Natural Science Foundation of China(22075086,22138005,22141001) the Guangdong Basic and Applied Basic Research Foundation(2019A1515011512,2020A1515011157,2021A1515010172,2022A1515010980)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部