期刊文献+

山东区域数据平台在电厂监管系统的应用 被引量:1

Application of Shandong Regional Data Platform in Power Plant Supervision System
下载PDF
导出
摘要 随着上级监管部门对发电企业的生产监督要求越来越高,生产指导性的系统也逐步增多,使得发电企业中各类上传数据越来越多,且大都需从DCS系统直接读取数据,因此使得DCS系统的通信接口越来越多,对DCS系统网络安全造成巨大隐患。文章针对发电企业存在的问题,运用大数据关键技术,提出一种全新的综合数据平台,实现各种数据在该平台的清洗、分析和融合。该平台具备良好的扩展性、兼容性和安全性,可实现和生产指导设备无缝对接,避免重复建设,减少项目投资。 As the higher-level regulatory agencies have higher and higher production supervision requirements for power generation companies,production guidance systems have gradually increased,making power generation companies upload more and more various types of data,and most of them need to directly read data from the DCS system.Therefore,there are more and more communication interfaces of the DCS system,which causes huge hidden dangers to the network security of the DCS system.Aiming at the problems of power generation companies,using the key technology of big data,a new comprehensive data platform is proposed to realize the cleaning,analysis and integration of various data on this platform.The platform has good scalability,compatibility and security,can realize seamless docking with production guidance equipment,avoid duplication of construction,and reduce project investment.
作者 陈湘 于信波 徐东岩 朱志军 马清峰 CHEN Xiang;YU Xinbo;XU Dongyan;ZHU Zhijun;MA Qingfeng
出处 《电力系统装备》 2023年第3期128-130,共3页 Electric Power System Equipment
关键词 火力发电厂 信息技术 综合数据平台 数据处理 网络安全 thermal power plant information technology integrated data platform data processing network security
  • 相关文献

参考文献2

二级参考文献43

  • 1Mc Kinsey Global Institute Reports.Big data:The Next Frontier for Innovation,Competition and Productivity[R],May 2011.
  • 2Felton Nicholas.Visualizations Make Big Data Meaningful[J].Communications of the ACM,2014,57(6):19-21.
  • 3Garber L.Using In-Memory Analytics to Quickly Crunch Big Data[J].Computer Magazine,2012,45(10):16-18.
  • 4Ivanilton Polato,Reginaldo Ré,Alfredo Goldman,et al.A Comprehensive View of Hadoop Research-A Systematic Literature Review[J].Journal of Network and Computer Applications,2014,46:1-25.
  • 5Ranjan Rajiv.Streaming Big Data Processing in Datacenter Clouds[J].IEEE Cloud Computing,2014,1(1):78-83.
  • 6Sanjay Ghemawat,Howard Gobioff,Shun-Tak Leung.The Google File System[J].Operating Systems Review,2003,37(5):29-43.
  • 7Shri Vaishnav.Prominence of MapReduce in Big Data Processing[C]∥2014 Fourth International Conference on Communication Systems and Network Technologies(CSNT),2014:555-560.
  • 8ZHANG Lei,LI Kai-ping,WU Bin.The Research and Design of SQL Processing in a Data-mining System Based on Mapreduce[C]∥2011 IEEE International Conference on Cloud Computing and Intelligence Systems(CCIS),2011:301-305.
  • 9Kannavara R,Shippy KL.Topics in Biometric Human-Machine Interaction Security[J].IEEE Potentials,2013,32(6):18-25.
  • 10Idris N,Ahmad K.Managing Data Source Quqlity for Data Warehouse in Manufacturing Services[C]∥2011 International Conference on Electrical Engineering and Informatics,2011:1-6.

共引文献44

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部