期刊文献+

基于停留区域识别的子轨迹异常检测方法

Subtrajectory Anomaly Detection Method based on Stay Area Recognition
原文传递
导出
摘要 对轨迹数据进行分析和处理能够揭示移动对象的运动规律并挖掘出与其相关的隐含信息,移动对象的不规律或异常运动产生了异常轨迹数据,异常数据的出现往往意味着有特殊情况发生,隐含着更有意义的信息,快速、准确地检测异常轨迹能够服务于交通分析及事故检测等具体应用领域。针对传统轨迹异常检测方法没有充分考虑轨迹局部异常的问题,该文提出一种基于停留区域识别的子轨迹异常检测方法:①设计了一种基于密度的停留点检测算法检测轨迹集的停留点,通过寻找核心点以建立初始簇,使用核心点邻域内的点扩展当前簇,并根据簇内的时间间隔是否满足时间条件,从而检测出停留点;②根据停留点集合识别停留区域,将任意2个停留区域作为一对起点和终点区域后对轨迹进行分段;③根据分段后子轨迹的起点区域和终点区域对子轨迹集进行分组;④针对每个分组内的子轨迹,设计子轨迹异常检测算法检测异常空间子轨迹和异常时空子轨迹。在真实轨迹数据集上与传统异常检测方法进行对比,实验结果表明本文所提方法能有效地检测出异常子轨迹,并且运行时间明显低于TRAOD方法,检测准确率比TRAOD方法最高提升了23.9%;F_(1)分数值相较于ATDC和iBAT方法有明显提升,最高提升率分别为7.8%和16.1%。本研究描述的轨迹异常检测方法可以为交通运输和管理部门提供有效的决策信息,为车辆轨迹数据挖掘提供新的解决方案。 The analysis and processing of trajectory data can reveal the motion law of moving objects and dig out the hidden information related to it.Irregular or abnormal movements of moving objects generate anomalous trajectory data,and the appearance of anomalous data often means that there is a special situation,which implies more meaningful information.Rapid and accurate detection of abnormal trajectories can serve applications such as traffic analysis and accident detection.In most application scenarios,the trajectory anomaly detection method needs to pay attention to the anomaly of the trajectory segments,while the existing methods do not fully consider the local anomaly of the trajectory,and the detection results have certain shortcomings.This paper proposes a subtrajectory anomaly detection method based on stay area recognition,which aims at the problem that traditional trajectory anomaly detection methods do not fully consider the local anomaly of the trajectory.This method first designs a density-based stay point detection algorithm to detect the stay points in the trajectory set,that is to say,establishes the initial cluster by finding the core point,expands the current cluster with the points in the neighborhood of the core point,and detects the stay points by determining whether the time interval in the cluster satisfies the time conditions or not.Second,it identifies the stay areas according to the set of stay points and segments each trajectory after taking any two stay areas as a pair of start and end areas.Third,the subtrajectory set is grouped according to the start and end regions of the subtrajectories after segmentation.Finally,for the subtrajectories in each group,a subtrajectory anomaly detection algorithm is designed to detect anomalous spatial subtrajectories and anomalous spatiotemporal subtrajectories.Compared with traditional anomaly detection methods on real trajectory datasets,the experimental results show that the proposed method can effectively detect abnormal sub-trajectories,and the running time is significantly shorter than that of the TRAOD method,and the detection accuracy is up to 23.9%higher than that of the TRAOD method.Compared with the ATDC and iBAT methods,the F_(1)score is significantly improved,with the highest improvement rates of 7.8%and 16.1%,respectively.The above experimental results verify the effectiveness and practicability of the proposed method.The trajectory anomaly detection method described in this study can provide effective decisionmaking information for transportation and management departments and provide a new solution for vehicle trajectory data mining.
作者 陈传明 龚杉 杨峰 肖振兴 俞庆英 CHEN Chuanming;GONG Shan;YANG Feng;XIAO Zhenxing;YU Qingying(School of Computer and Information,Anhui Normal University,Wuhu 241002,China;Anhui Provincial Key Laboratory of Network and Information Security,Wuhu 241002,China)
出处 《地球信息科学学报》 CSCD 北大核心 2023年第4期684-697,共14页 Journal of Geo-information Science
基金 国家自然科学基金项目(61702010、61972439) 安徽省自然科学基金项目(2208085MF164) 安徽高校自然科学研究重点项目(KJ2021A0125)。
关键词 轨迹数据 数据挖掘 异常检测 轨迹分段 轨迹分组 停留点检测 停留区域 局部异常 trajectory data data mining anomaly detection trajectory segmentation trajectory grouping stay point detection stay area local anomaly
  • 相关文献

参考文献6

二级参考文献45

  • 1宋莺,李清泉,郑年波.基于LBS的分布式车辆监控信息服务平台[J].计算机工程,2007,33(6):242-244. 被引量:8
  • 2Knorr E M, Ng R T, Tucakov V. Distance-based outliers: Algorithms and applications. VLDB Journal, 2000, 8 (3) : 237-253.
  • 3Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets//Proceedings of the 2000 ACM SIGMOD International Conference. Dallas, TX, USA, 2000:427-438.
  • 4Breunig M M, Kriegel H P, Ng R T, Sander J. LOF: lden tifying density-based local outliers//Proceedings of the 2000 ACM SIGMOD International Conference. Dallas, TX, USA, 2000:93-104.
  • 5Papadimitriou S, Kitagawa H, Gibbons P B, Faloutsos C. LOCI: Fast outlier detection using the local correlation into gral//Proceedings of the 19th International Conference on Data Engineering. Bangalore, India, 2003:315-326.
  • 6Aggarwal C C, Yu P S. Outlier detection for high dimensional data//Proceedings of the 2001 ACM SIGMOI) International Conference. Santa Barbara, CA USA, 2001:37 -46.
  • 7Li X, Han J, Kim S, Gonzalez H. ROAM: Rule and motifbased anomaly detection in massive moving object data sets// Proceedings of the 7th SIAM International Conferencc on Data Mining. Minneapolis, Minnesota, 2007:296-307.
  • 8Lee J, Han J, Li X. Trajectory outlier detection: A parti tion-and-detect framework//Proceedings of the 24th Interna tional Conference on Data Engineering. Cancun, Mexico,2008:140-149.
  • 9Huttenlocher D P, Klanderman G A, Rucklidge W A. Corn paring images using the hausdorff distance. IEEE Transac tions on Pattern Analysis and Machine Intelligence, 1993 15(9) : 850-863.
  • 10Tao Yufei, Papadias Dimitris, Sun Jimeng. The TPR * tree: An optimized spatio temporal access method for predictive queries//Proeeedings of the 29th International Conference on Very Large Databases. Berlin, Germany, 2003:790 -801.

共引文献230

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部