期刊文献+

Adaptive connected hierarchical optimization algorithm for minimum energy spacecraft attitude maneuver path planning

原文传递
导出
摘要 Space object observation requirements and the avoidance of specific attitudes produce pointing constraints that increase the complexity of the attitude maneuver path-planning problem.To deal with this issue,a feasible attitude trajectory generation method is proposed that utilizes a multiresolution technique and local attitude node adjustment to obtain sufficient time and quaternion nodes to satisfy the pointing constraints.These nodes are further used to calculate the continuous attitude trajectory based on quaternion polynomial interpolation and the inverse dynamics method.Then,the characteristic parameters of these nodes are extracted to transform the path-planning problem into a parameter optimization problem aimed at minimizing energy consumption.This problem is solved by an improved hierarchical optimization algorithm,in which an adaptive parameter-tuning mechanism is introduced to improve the performance of the original algorithm.A numerical simulation is performed,and the results confirm the feasibility and effectiveness of the proposed method.
机构地区 School of Astronautics
出处 《Astrodynamics》 EI CSCD 2023年第2期197-209,共13页 航天动力学(英文)
基金 supported by the National Natural Science Foundation of China(No.11572019).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部