摘要
采用双水解共沉淀法结合浸渍法合成了系列的MoO_(3)改性的xMoO_(3)/Ni O-Al_(2)O_(3)催化剂(x%为MoO_(3)的质量分数),利用固定床装置对催化剂的甲烷化反应活性和耐硫性能进行评价,并对失活前后催化剂进行详细表征。结果表明,随着MoO_(3)含量的升高MoO_(3)改性后的催化剂甲烷化活性有所下降,但MoO_(3)的掺杂显著提升了催化剂的耐硫性能。催化剂低温甲烷化活性降低的原因在于MoO_(3)负载量的增加降低了催化剂的活性比表面积,但MoO_(3)的引入也为硫化物提供了一个竞争吸附位点,进而延缓了活性位点的硫中毒过程。当MoO_(3)负载量(质量分数)为12.5%时,12.5MoO_(3)/Ni O-Al_(2)O_(3)催化剂在143 mg·m^(-3)H_(2)S/H_(2)气氛下运行时间长达7 h,远高于其他催化剂。12.5MoO_(3)/Ni O-Al_(2)O_(3)催化剂吸收硫的量(质量分数)达到0.71%,是Ni O-Al_(2)O_(3)催化剂硫吸附量的1.48倍。XPS表征进一步发现12.5MoO_(3)/Ni O-Al_(2)O_(3)催化剂表面生成的Mo S2最多,这说明在此负载量下Mo优先吸附了更多的硫而保护了活性位点。此外,MoO_(3)负载量为12.5%时,MoO_(3)在催化剂表面接近单层分散阀值,当竞争吸附发生时,为硫化物提供更多的吸附位点。
A series of xMoO_(3)/NiO-Al_(2)O_(3)catalysts(x%represented the mass fraction of MoO_(3))were prepared by double hydrolytic co-precipitation method combined with impregnation method.The methanation reaction activity and sulfur resistance of catalysts were evaluated using a fixed-bed reactor,and the catalysts were characterized in detail fresh and after deactivation.The results showed that the low-temperature methanation activity of the catalyst decreased with the increase in MoO_(3)loading,whereas the sulfur resistance of the catalyst was significantly enhanced after MoO_(3)doping.The decrease in catalyst activity for low-temperature methanation was attributed to the fact that the increase in MoO_(3)loading reduced the active specific surface area of the catalyst,but the introduction of MoO_(3)also provided a competitive adsorption site for sulfide,which can delay sulfur poisoning at the active site.The xMoO_(3)/NiO‑Al_(2)O_(3)catalyst with 12.5%MoO_(3)loading(mass fraction)maintained the highest methanation activity for 7 h in the presence of 143 mg·m^(-3)H_(2)S/H_(2)(81.1%CO conversion,550℃).The sulfur chemisorption content of 12.5MoO_(3)/NiO‑Al_(2)O_(3)catalyst reaching 0.71%(mass fraction)was 1.48 times that of NiO‑Al_(2)O_(3)catalyst and further XPS also confirmed that the amount of MoS2 generated was the highest,which indicated that Mo preferentially adsorbs more sulfur and protects the active site.In addition,at a MoO_(3)loading of 12.5%,MoO_(3)on the surface of the catalyst reached the threshold of monolayer dispersion,which can provide more adsorption sites for sulfides when competitive adsorption occurs.
作者
王志斌
秦志峰
韩勋
孙鹏程
刘毅
常丽萍
任军
李聪明
WANG Zhi-Bin;QIN Zhi-Feng;HAN Xun;SUN Peng-Cheng;LIU Yi;CHANG Li-Ping;REN Jun;LI Cong-Ming(State Key Laboratory of Clean and Efficient Coal Utilization,College of Chemical Engineering and Technology,Taiyuan University of Technology,Taiyuan 030024,China;Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,Taiyuan 030002,China;Postdoctoral Research Station,Environmental Planning Institute of Shanxi Province,Taiyuan 030002,China;Environmental Science and Engineering Postdoctoral Mobile Station,Tsinghua University,Beijing 100084,China)
出处
《无机化学学报》
SCIE
CAS
CSCD
北大核心
2023年第5期967-978,共12页
Chinese Journal of Inorganic Chemistry
基金
2018年度山西省优秀人才科技创新项目(No.201805D211037)
2016年度山西省科技重大专项(No.MJH2016-03)
山西浙大新材料与化工研究院研发项目(No.2021ST-AT-002)资助。