期刊文献+

飞机整体驱动发电机可靠性与维修策略探究 被引量:1

Research on reliability and maintenance strategy of aircraft integral drive generator
下载PDF
导出
摘要 针对飞机整体驱动发电机可靠性分析手段缺乏、故障样本小且维修策略相对保守的问题,提出了以历史故障数据为驱动的贝叶斯和马尔可夫链融合的可靠性分析方法。首先,利用蒙特卡洛方法对故障数据预处理以增大样本空间,并通过最大信息熵法求解飞机整体驱动发电机的先验分布;其次,利用马尔可夫链方法对复杂后验分布进行解算;最后,以可靠性为中心给出飞机IDG的维修建议。经过数值仿真软件计算后得IDG的累计失效函数参数估计误差分别为0.1213和0.0013,误差较小。仿真结果表明,提出的可靠性分析方法适用于小样本空间的飞机IDG可靠性分析,并根据结果给出了维修建议。 In view of the lack of reliability analysis methods,small fault samples and relatively conservative maintenance strategies of aircraft integral drive generators,a reliability analysis method based on Bayesian and Markov chain fusion driven by historical fault data was proposed.Firstly,the Monte Carlo method was used to preprocess the fault data to increase the sample space,and the prior distribution of the aircraft overall drive generator was solved by the maximum information entropy method.Secondly,the Markov chain method was used to solve the complex posterior distribution.Finally,the maintenance suggestions of the aircraft IDG(integral drive generator)were given based on the reliability.The cumulative failure function parameter estimation errors of IDG calculated by numerical simulation software are 0.1213 and 0.0013 respectively,with small errors.The simulation results show that the proposed reliability analysis method is suitable for aircraft IDG reliability analysis in small sample space,and maintenance suggestions were given according to the results.
作者 王兢茹 杨剑锋 杨忠清 WANG Jingru;YANG Jianfeng;YANG Zhongqing(Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;The Fifth Research Institute of MIIT,Guangzhou 510610,China)
出处 《民用飞机设计与研究》 2023年第1期8-14,共7页 Civil Aircraft Design & Research
关键词 飞机整体驱动发电机 最大信息熵 可靠性 维修策略 aircraft integral drive generators maximum information entropy reliability maintenance strategy
  • 相关文献

参考文献4

二级参考文献38

  • 1吴耀国,周杰,王柱,曾艳.随机删失数据下基于EM算法的Weibull分布参数估计[J].四川大学学报(自然科学版),2005,42(5):910-913. 被引量:12
  • 2李金国,傅志国,刘永坚.高可靠性航空产品试验技术[M].北京:国防工业出版社,2011.
  • 3Zhang L F,Xie M,Tang L C.A study of two estimation approaches for parameters of two-parameter Weibull distribution based on WPP[C]//Proceedings of the 4th International Conference on Quality and Reliability,2005:377-384.
  • 4Wang Z T,Gou J Y.Simulation analysis of field data estimators for 2-parameter Weibull distribution[C]//Proceed-ings of the 4th International Conference on ReliabilityMaintainability and Safety,1999:391-396.
  • 5Gebizlioglua O L,Seno(g)lua B,Kantar Y M.Comparison of certain value-at-risk estimation methods for the two-parameter Weibull loss distribution[J].Journal of Computational and Applied Mathematics,2011,235(11) :3304-3314.
  • 6Luceno A.Maximum likelihood vs.maximum goodness of fit estimation of the three parameter Weibull distribution[J].Journal of Statistical Computation & Simulation,2008,78(10):941-949.
  • 7Gibborns D I,Vane L C.A simulation study of estimators for the 2 parameter Weibull distribution[J].IEEE Transactions on Reliability,1981,30(1):61-66.
  • 8Shen K F,Shen Y J,Leu L Y.Design of optimal steptress accelerated life tests under progressive type I censoring with random removals[J].Quality and Quantity,2011,45(3):587-597.
  • 9Andres Christen J,Ruggeri F,Villa E.Utility based maintenance analysis using a random sign censoring model[J].Reliability Engineering and System Safety,2011,96(3):425-431.
  • 10Dempster A P,Laird N M,Rudin D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society:Series B,1977,39(1):1-38.

共引文献52

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部