期刊文献+

Breather waves, analytical solutions and conservation laws using Lie–Bäcklund symmetries to the (2 + 1)-dimensional Chaffee–Infante equation 被引量:2

原文传递
导出
摘要 The(2+1)-dimensional Chaffee–Infante has a wide range of applications in science and engineering,including nonlinear fiber optics,electromagnetic field waves,signal processing through optical fibers,plasma physics,coastal engineering,fluid dynamics and is particularly useful for modeling ion-acoustic waves in plasma and sound waves.In this paper,this equation is investigated and analyzed using two effective schemes.The well-known tanh-coth and sine-cosine function schemes are employed to establish analytical solutions for the equation under consideration.The breather wave solutions are derived using the Cole–Hopf transformation.In addition,by means of new conservation theorem,we construct conservation laws(CLs)for the governing equation by means of Lie–Bäcklund symmetries.The novel characteristics for the(2+1)-dimensional Chaffee–Infante equation obtained in this work can be of great importance in nonlinear sciences and ocean engineering.
出处 《Journal of Ocean Engineering and Science》 SCIE 2023年第2期145-151,共7页 海洋工程与科学(英文)
  • 相关文献

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部