摘要
为了提高装备检修数据库的检索效率,提出了一种适用于中文句子对的短文本匹配模型Lattice LSTM-Mul。首先,模型采用Lattice LSTM网络获取单词层面的语义特征,避免了中文句子的分词错误问题;接着,采用BiLSTM网络对上下文关系进行建模,更好地捕捉双向语义依赖关系;最后,利用Transformer编码器实现两个短文本的多层次信息交互。对比试验表明,该模型能够提高数据库信息检索功能的用户体验,对推进智慧营区建设起到积极的作用。
In order to improve the retrieval efficiency of equipment maintenance database,a short text matching model named Lattice LSTM-Mul suitable for Chinese sentence pairs is proposed.Firstly,the model uses Lattice LSTM network to obtain semantic features at the word level,which avoids word segmentation errors in Chinese sentences.Then,the BiLSTM network is used to model the context relationship to better capture the bidirectional semantic dependencies.Finally,Transformer encoder is used to realize multi-level information interaction between two short texts.The comparative experiment shows that the model can improve the user experience of database information retrieval function,and play a positive role in promoting the construction of army’s smart barracks.
作者
薛建良
余鹏宇
车镐邑
芦苇
尤智
无
XUE Jianliang;YU Pengyu;CHE Haoyi;LU Wei;YOU Zhi;无(Nanjing Institute of Electronic Engineering,Nanjing 210000,China;Unit 93184 of the PLA,Beijing 100071,China;Central War Zone Air Force Protection Department,Beijing 100010,China)
出处
《电子质量》
2023年第3期31-36,共6页
Electronics Quality
关键词
短文本匹配
词格长短期记忆网络
双向长短期记忆网络
多层次信息交互
short text matching
lattice long short term memory
bi-directional long short-term memory
multi-level information interaction