摘要
多旋翼无人机装载5G模块后,为避免对其飞行稳定性产生不良影响,需进行模态分析及结构优化。首先,通过SolidWorks软件建立多旋翼无人机的三维模型,并将该模型导入ANSYS Workbench软件进行模态分析,分别得到多旋翼无人机装载5G模块前后的模态;然后,根据模态分析结果得出,多旋翼无人机存在固有频率与激励频率过于耦合而引发共振的可能性;接着,分别对多旋翼无人机的固定板厚度、5G模块装载位置和起落架结构进行模态分析,得知起落架结构对多旋翼无人机的固有频率影响显著;最后,在减少起落架质量的基础上,优化起落架结构,提高多旋翼无人机的固有频率,有效避免共振现象,提升其飞行稳定性。
After the multi-rotor unmanned aerial vehicle is loaded with 5G modules,modal analysis and structural optimization are necessary to avoid adverse effects on its flight stability.Firstly,a three-dimensional model of a multi-rotor unmanned aerial vehicle is established using SolidWorks software,and the model is imported into ANSYS Workbench software for modal analysis to obtain the modes of the multi-rotor unmanned aerial vehicle before and after loading the 5G module;Then,based on the modal analysis results,it is concluded that there is a possibility of resonance caused by excessive coupling between the natural frequency and the excitation frequency of the multi-rotor unmanned aerial vehicle;Next,modal analysis was conducted on the fixed plate thickness,5G module loading position,and landing gear structure of the multi-rotor unmanned aerial vehicle,indicating that the landing gear structure has a significant impact on the natural frequency of the multi-rotor unmanned aerial vehicle;Finally,on the basis of reducing the weight of the landing gear,optimize the landing gear structure,increase the natural frequency of the multi-rotor unmanned aerial vehicle,effectively avoid resonance phenomena,and improve its flight stability.
作者
刘诚
刘忆森
周松斌
赵路路
袁飞
LIU Cheng;LIU Yisen;ZHOU Songbin;ZHAO Lulu;YUAN Fei(Institute of Intelligent Manufacturing,Guangdong Academy of Science,Guangzhou 510070,China;Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650051,China;Guangdong Polytechnic Normal University,Guangzhou 510665,China)
出处
《自动化与信息工程》
2023年第2期6-10,21,共6页
Automation & Information Engineering
基金
国家重点研发计划(2019YFB1804203)。
关键词
多旋翼无人机
5G模块
模态分析
共振
结构优化
multi-rotor UAV
5G module
modal analysis
resonance
structural optimization