期刊文献+

多智能体编队控制中的迁移强化学习算法研究 被引量:1

Study on learning algorithm of transfer reinforcement for multi-agent formation control
下载PDF
导出
摘要 针对多障碍环境下的多智能体系统协同编队避障与防撞问题,提出一种迁移学习与强化学习相结合的编队控制算法。在源任务学习阶段,利用值函数近似方法避免Q-表格求解法所需的大规模存储空间问题,有效降低对存储空间的需求,提升算法求解速度;在目标任务学习阶段,采用高斯聚类算法对源任务进行分类,根据聚类中心和目标任务之间的距离,选择最优的源任务类进行目标任务学习,有效避免了负迁移现象,进而提升了强化学习算法的泛化能力及收敛速度。仿真实验结果表明,所提方法能使多智能体系统在复杂的障碍环境下有效地形成并保持编队构型,同时实现避障与防撞。 Considering the obstacle avoidance and collision avoidance for multi-agent cooperative formation in multi-obstacle environment,a formation control algorithm based on transfer learning and reinforcement learning is proposed.Firstly,in the source task learning stage,the large storage space required by Q-table solution is avoided by using the value function approximation method,which effectively reduces the storage space requirement and improves the solving speed of the algorithm.Secondly,in the learning phase of the target task,Gaussian clustering algorithm was used to classify the source tasks.According to the distance between the clustering center and the target task,the optimal source task class was selected for target task learning,which effectively avoided the negative transfer phenomenon,and improved the generalization ability and convergence speed of reinforcement learning algorithm.Finally,the simulation results show that this method can effectively form and maintain formation configuration of multi-agent system in complex environment with obstacles,and realize obstacle avoidance and collision avoidance at the same time.
作者 胡鹏林 潘泉 郭亚宁 赵春晖 HU Penglin;PAN Quan;GUO Yaning;ZHAO Chunhui(School of Automation,Northwestern Polytechnical University,Xi′an 710129,China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2023年第2期389-399,共11页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(61790552,62073264)资助。
关键词 多智能体系统 迁移强化学习 值函数近似 编队控制 高斯聚类 multi-agent system transfer reinforcement learning value function approximation formation control Gaussian clustering
  • 相关文献

参考文献1

二级参考文献4

共引文献49

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部