摘要
碳纳米材料作为21世纪的明星材料,具有优异的光、电与力学性能。其制备过程中需要金属基底进行沉积与催化,然后将制备的碳纳米材料从金属基底转移到含SiO_(2)的介电基体进一步构筑电子器件。但在转移过程中会引入碳纳米材料的褶皱、破损等结构缺陷,以及金属和试剂残留,造成电子器件性能下降。因此,直接在含SiO_(2)介电基体表面制备碳纳米材料具有重要意义。总结了近年在含SiO_(2)介电基体表面制备碳纳米材料的研究进展,阐述了金属扩散-析出法、化学气相沉积法、分子束外延生长法等多种制备手段;介绍了石英玻璃、玻璃纤维两种主要含SiO_(2)介电基体生长碳纳米材料的特点与性能,并提出了在含SiO_(2)介电基体表面制备碳纳米材料的研究难点与趋势。
Carbon nanomaterials,as star material in the 21st century,have excellent optical,electrical and mechanical properties.The preparation of carbon nanomaterials requires deposition and catalysis on metal substrates,and then the prepared carbon nanomaterials are transferred from metal substrates to SiO_(2)-containing dielectric substrates to further construct electronic devices.In this process,structural defects such as folds and damages,as well as metal residues and reagent residues of carbon nanomaterials are introduced,resulting in the degradation of electronic device performance.Therefore,it is of great significance to prepare carbon nanomaterials directly on the surface of SiO_(2)-containing dielectric matrix.In this paper,we summarized the recent progress in the preparation of carbon nanomaterials uc2aon SiO_(2)-containing dielectric substrates and described the metal diffusion-precipitation method,chemical vapor deposition method,molecular beam epitaxy growth method and other preparation methods.we further introduced the characteristics and properties of silica glass and glass fiber grown carbon nanomaterials and pointed out the research difficulties and trends in the preparation of carbon nanomaterials on the surface of SiO_(2)-containing dielectric matrix.
作者
石鑫
谭晶
于景超
安瑛
杨卫民
Shi Xin;Tan Jing;Yu Jingchao;An Ying;Yang Weimin(College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029)
出处
《化工新型材料》
CAS
CSCD
北大核心
2023年第3期45-51,共7页
New Chemical Materials
基金
中央高校基本科研业务费项目(XK1802-3)。
关键词
碳纳米材料
含SiO_(2)
介电基体
金属扩散-析出法
化学气相沉积法
静电化学吸附法
carbon nanomaterials
SiO_(2)-containing dielectric matrix
metal diffusion-precipitation method
chemical vapor deposition
electrostatic chemisorption