摘要
铜(Cu)基复合材料具有优异的力学、热学、电学及耐磨和耐腐蚀等性能,广泛应用于各种工业技术领域。石墨烯(Graphene,Gr)具有二维平面结构和优异的综合性能,是金属基复合材料理想的增强相。石墨烯增强铜基复合材料拓展了铜及其合金的应用范围,适当的制备方法可以使其在保持优异导电导热性能的同时拥有更好的力学性能。石墨烯在铜基体中的存在形式主要以还原氧化石墨烯、石墨烯纳米片或与金属氧化物/碳化物纳米颗粒连接,旨在增强两者之间的界面结合。因此,石墨烯在铜基体中的结构完整性及存在形式直接影响了其性能的优劣。本文综述了Cu/Gr复合材料的制备及模拟方法、复合材料的性能评价及力学性能与功能特性的相互影响规律。指明Cu/Gr复合材料的发展关键在于:(1)分散性与界面结合;(2)三维石墨烯结构的构建;(3)界面结合对力学性能与功能特性的影响及两者间的相互协调。
Copper(Cu)matrix composites have excellent mechanical,thermal,electrical,wear and corrosion resistance properties,and are widely used in industrial fields.Graphene(Gr)is an ideal reinforcement phase for metal matrix composites due to its two-dimensional features and excellent physical properties.Gr reinforced Cu have expanded the applications of Cu and its alloys.Appropriate preparation methods can achieve excellent electrical and thermal conductivity while maintaining the excellent mechanical properties.Gr in Cu matrix mainly exist in the form of reduced GO(r-GO),graphene nanosheets or connected with metal oxide/carbide nanoparticles to enhance the interface bonding.Therefore,the structural integrity and the form of graphene in Cu matrix directly affect its performances.In this review paper,the preparation and simulation methods of Cu/Gr composites,the evaluation on the performances and the interaction between mechanical and functional properties are summarized.The key to the development of Cu/Gr composites is suggested:(1)dispersion and interfacial bonding;(2)construction of threedimensional graphene structures;(3)the effect of interfacial bonding on the mechanical and functional properties.
作者
陈春姣
包宏伟
李燕
白惠中
杨朔涵
马飞
CHEN Chunjiao;BAO Hongwei;LI Yan;BAI Huizhong;YANG Shuohan;MA Fei(State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China)
出处
《复合材料学报》
EI
CAS
CSCD
北大核心
2023年第3期1248-1262,共15页
Acta Materiae Compositae Sinica
基金
国家重点研发计划资助(2021 YFB3400800)
国家自然科学基金(52271136,51901177)
陕西省自然科学金(2021 JC-06,2019 TD-020)。
关键词
铜基复合材料
石墨烯增强
界面设计
高强高导
研究进展
copper matrix composites
graphene reinforcement
interfacial design
high-strength and high-conductivity
research progress