期刊文献+

Path Factors and Neighborhoods of Independent Sets in Graphs

原文传递
导出
摘要 A path-factor is a spanning subgraph F of G such that every component of F is a path with at least two vertices.Let k≥2 be an integer.A P_(≥k)-factor of G means a path factor in which each component is a path with at least k vertices.A graph G is a P_(≥k)-factor covered graph if for any e∈E(G),G has a P_(≥k)-factor including e.Letβbe a real number with 1/3≤β≤1 and k be a positive integer.We verify that(ⅰ)a k-connected graph G of order n with n≥5k+2 has a P_(≥3)-factor if|NG(I)|>β(n-3k-1)+k for every independent set I of G with|I|=「β(2k+1)」;(ⅱ)a(k+1)-connected graph G of order n with n≥5k+2 is a P_(≥3)-factor covered graph if|NG(I)|>β(n-3k-1)+k+1 for every independent set I of G with|I|=「β(2k+1)」.
作者 Si-zhong ZHOU
机构地区 School of Science
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2023年第2期232-238,共7页 应用数学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部