期刊文献+

选区激光熔化成形VNbMoTaW难熔高熵合金工艺研究 被引量:2

Selective Laser Melting and Forming VNbMoTaW Refractory High Entropy Alloy
原文传递
导出
摘要 采用选区激光熔化技术制备了VNbMoTaW难熔高熵合金,研究了激光工艺参数对VNbMoTaW难熔高熵合金试样的表面成形质量、微观组织和力学性能的影响。结果表明,当采用较高的功率和较低的扫描速度时,可有效改善VNbMoTaW试样表面质量,其中孔隙和裂纹是选区激光熔化技术制备VNbMoTaW难熔高熵合金的主要缺陷。VNbMoTaW难熔高熵合金组织主要由柱状晶和胞状晶组成,底部和中心大多为柱状晶,而熔池的两侧及顶部主要为胞状晶。VNbMoTaW的最高极限抗压强度可达2154 MPa,相比电弧熔炼方式制备的合金强度提高了69.6%。 The VNbMoTaW refractory high entropy alloy was prepared using selective laser melting.The effect of laser melting parameters on the surface forming quality,microstructure,and mechanical properties of VNbMoTaW refractory high entropy alloy specimens were investigated.The results show that the surface quality of the specimens can be effectively improved when a higher power and lower scanning speed are used,where porosity and cracks are the main defects in the preparation of the VNbMoTaW refractory high entropy alloy using selective laser melting.The VNbMoTaW refractory alloy mainly comprises columnar and cellular crystals,the bottom and central areas are mostly columnar crystals,while the sides and top of the melt pool are mainly cellular crystals.The maximum ultimate compressive strength of VNbMoTaW can reach 2154 MPa,which is 69.6%higher than that of alloys prepared using arc melting.
作者 谷朋飞 齐腾博 陈兰 葛通 任旭东 Gu Pengfei;Qi Tengbo;Chen Lan;Ge Tong;Ren Xudong(School of Mechanical Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu,China;Zhong Rui Zhichuang 3D Technology Co.,Ltd.,Suzhou 215000,Jiangsu,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2023年第5期131-138,共8页 Laser & Optoelectronics Progress
基金 国家重点研发计划(2016YFB1102602) 国家自然科学基金(51975261) 江苏省青年科学基金(BK20210754)。
关键词 激光技术 选区激光熔化 VNbMoTaW难熔高熵合金 表面质量 内部缺陷 力学性能 laser technique selective laser melting VNbMoTaW refractory high entropy alloy surface quality internal defects mechanical properties
  • 相关文献

参考文献8

二级参考文献85

  • 1周丹,沈义,熊大辉,王爱华,吴旭浩,杨志翔.扫描速度和Ni含量对高速激光熔覆层特性的影响[J].应用激光,2020,40(4):579-586. 被引量:11
  • 2Kruth J P, Levy G, Klocke F, et al.. Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. Annals of the CIRP, 2007, 56(2): 730-759.
  • 3Kruth J P, Mercelis P, Van V J, et al.. Binding mechanisms in selectivelaser sintering and selective laser melting[J]. Rapid prototyping journal, 2005, 11(1): 26-36.
  • 4Meiners W, Wissenbach K, Gasser A. Selective Laser Sintering at Melting Temperature: US Patent, B 1, 6215093[P]. 2001-10-04.
  • 5Brandl E, Heckenberger U, Holzinger V, et al.. Additive manufactured A1Si10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials and Design, 2012, 34:159-169.
  • 6Kempen K, Thijs L, Van H J, et al.. Mechanical properties of AlSi10Mg produced by selective laser melting[J]. Physics Procedia, 2012, 39: 439-446.
  • 7Shiomi M, Osakada K, Nakamura K, et al.. Residual stress within metallic model made by selective laser melting process[J]. C1RP Ann Manuf Technol, 2004, 53(1): 195-198.
  • 8Vrancken B, Cain V, Knutsen R, et al.. Residual stress via the contour method in eompact tension specimens produced via selective laser melting[J]. Seripta Materialia, 2014, 87: 29-32.
  • 9Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5): 254-265.
  • 10Nickel A H, Barnett D M, Prinz F B. Thermal stresses and deposition patterns in layered manufacturing[J]. Materials Seience and Engineering: A, 2001, 317(1): 59-64.

共引文献96

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部