期刊文献+

爆震波逆向传播抑制特性数值仿真

Study on the Suppression Characteristics of Backward Propagation of Detonation Wave
下载PDF
导出
摘要 为了发展爆震工作条件下进气涵道运动激波前传抑制技术,采用非定常数值方法开展了爆震发动机进气涵道流动特性与高频强扰动抑制技术研究。结果表明:受出口高频强压力扰动影响,涵道内存在逆向传播的运动激波。在运动激波逆向传播过程中激波强度与压力脉动强度先衰减后增强,运动激波传播速度逐渐减小直至为零。刚性障碍物高度影响运动激波传播特性。随着障碍物高度增加,压力脉动谷值逐渐降低并向下游移动,同时结尾激波向上游移动,波前马赫数降低,结尾激波强度减弱,使出口马赫数和总压恢复系数均增大;合理选取刚性障碍物高度可以有效降低压力脉动强度,当障碍物高度为进气涵道出口高度的0.07倍时,涵道内的总压恢复系数达到了0.884,脉动强度谷值最大下降36.6%,对上游的影响相对较小。 In order to develop the backward propagation suppression technology of the moving shock in the inlet duct under detona⁃tion working conditions,the unsteady numerical method was used to study the flow characteristics and high-frequency strong disturbances suppression technology in the inlet duct of the detonation engine.The results show that affected by the high-frequency strong pressure dis⁃turbances at the outlet,there are backward propagating moving shocks in the duct.In the process of the backward propagation,the strength of the shock and pressure fluctuation attenuates first and then increases.The propagation speed of the moving shock gradually de⁃creases to zero.The height of the rigid obstacles affects the propagation characteristics of the moving shock.As the height of the obstacles increases,the valley value of pressure fluctuation gradually decreases,the position of the valley value move downstream,while the termi⁃nal shock wave moves upstream,the wavefront Mach number decreases,the terminal shock strength decreases,leading to the increase of the outlet Mach number and the total pressure recovery coefficient.Reasonable size of rigid obstacles can effectively reduce the intensity of pressure fluctuation.When the height of the obstacles is 0.07 times the outlet height of the inlet duct,the total pressure recovery coefficient in the duct reaches 0.884,and the valley value of the pressure fluctuation intensity decreases by 36.6%at most,which has relatively little impact on the upstream.
作者 张彦军 严凯威 王晓东 王卫星 ZHANG Yan-jun;YAN Kai-wei;WANG Xiao-dong;WANG Wei-xing(AECC Shenyang Engine Research Institute,Shenyang 110015,China;College of Energy and Power,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《航空发动机》 北大核心 2023年第2期45-54,共10页 Aeroengine
基金 国家科技重大专项资助。
关键词 爆震发动机 运动激波 抑制技术 流动特性 数值仿真 detonation engine moving shock suppression technology flow characteristics numerical simulation
  • 相关文献

参考文献6

二级参考文献55

  • 1HUANG Wei,QIN Hui,LUO ShiBin & WANG ZhenGuo Institute of Aerospace & Materials Engineering,National University of Defense Technology,Changsha 410073,China.Research status of key techniques for shock-induced combustion ramjet(shcramjet) engine[J].Science China(Technological Sciences),2010,53(1):220-226. 被引量:9
  • 2王丁喜,严传俊.脉冲爆震发动机进气道气动性能的数值研究[J].力学学报,2005,37(6):777-782. 被引量:6
  • 3张义宁,王家骅,张靖周,陈兵.脉冲爆震火箭发动机关键技术和样机研究[J].南京航空航天大学学报,2006,38(5):529-534. 被引量:7
  • 4王治武,严传俊,李牧,黄希桥.不同内径两相脉冲爆震模型机爆震波速的试验研究[J].西北工业大学学报,2007,25(1):1-5. 被引量:2
  • 5Chang K S, Kim J K. Numerical investigation of inviscid wave dynamics in an expansion tube[J]. Shock Waves,1995,5:33-45.
  • 6Jiang Z, Takayama K. Numerical simulation of shock wave flow in an expanding tube by the dispersion controlled scheme[A]. Proceedings of Japanese 8th Symposium of CFD[C]. Tokyo, Japan, 1994:45-48.
  • 7Jiang Z, Takayama K, Babinsky H, et al. Transient shock wave flows in tubes with a sudden change in cross section[J]. Shock Waves, 1997,7 : 151-162.
  • 8Reichenbach H, Kuhl A L. Shock-induced turbulent flow in baffle systems[A]. Brun R, Dumitrescu L Z. Shock Waves @ Marseille IV[C]. Springer-Verlag Berlin Heidelberg, 1995:69-74.
  • 9Sasoh A, Matsuoka K, Nakashio K, et al. Attenuation of weak shock waves along a pseudo-perforrated walls[J].Shock Waves, 1998,8 : 149- 159.
  • 10Schmidt E M, Duffy S J. Noise from shock tube facilities[R]. AIAA paper 85-0049, 1985.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部