期刊文献+

基于迁移判别回归的跨域语音情感识别 被引量:2

Transfer Discriminant Regression for Cross-domain Speech Emotion Recognition
下载PDF
导出
摘要 针对实际情况下训练和测试数据来自不同领域数据库导致识别性能下降的问题,提出了一种基于迁移判别回归的跨域语音情感识别方法。首先,引入最大均值差异和图拉普拉斯项作为域间联合距离度量,在减小概率分布差异的同时,很好地保留数据的局部几何结构,从而学习到一个可迁移的公共特征表示。其次,本文采用一种能量保持策略,以避免迁移过程中目标域信息的丢失。此外,通过引入判别回归项,利用已标记的源域样本在公共子空间中训练一个可迁移的判别回归模型。最后,为了使学习到的模型具有特征选择能力和鲁棒性,分别对投影矩阵和回归项施加L2,1范数约束。在3个公开数据集上的实验结果表明,本文提出的算法相较于其他几种迁移学习方法具有更好的识别性能。 To solve the problem that the training and testing data come from different domain databases in actual situation,which leads to the decline of recognition performance,we proposed a transfer discriminant regression method for crossdomain speech emotion recognition.Specifically,first,we employed maximum mean discrepancy(MMD)and graph Laplacian as the distance measurement between domains to reduce the distribution difference while preserving the local geometrical structure.Thus,we can learn a transferable common feature representation.To ensure that the information of target corpus is not lost in the process of knowledge transfer,an energy conservation strategy was proposed.Second,we trained a transferable regression model by using labeled source domain samples in the common subspace.We imposed an L2,1-norm constraint on the common projection matrix and regression term,which can make the model be more robust.The experimental results on three public datasets show that the proposed approach outperforms the other transfer learning methods.
作者 宋鹏 李绍凯 张雯婧 郑文明 赵力 SONG Peng;LI Shaokai;ZHANG Wenjing;ZHENG Wenming;ZHAO Li(School of Computer and Control Engineering,Yantai University,Yantai,Shandong 264005,China;Key Laboratory of Child Development and Learning Science of Ministry of Education,Southeast University,Nanjing,Jiangsu 210096,China)
出处 《信号处理》 CSCD 北大核心 2023年第4期649-657,共9页 Journal of Signal Processing
基金 国家自然科学基金(61703360)资助项目 中央高校基本科研业务费专项资金(2242021k30014,2242021k30059)。
关键词 跨域语音情感识别 判别回归 迁移学习 cross-domain speech emotion recognition discriminant regression transfer learning
  • 相关文献

参考文献3

二级参考文献42

共引文献163

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部