期刊文献+

An Interpretable Depression Prediction Model for the Elderly Based on ISSA Optimized LightGBM

下载PDF
导出
摘要 Depression is one of the most severe mental health illnesses among senior citizens.Aiming at the low accuracy and poor interpretability of traditional prediction models,a novel interpretable depression predictive model for the elderly based on the improved sparrow search algorithm(ISSA)optimized light gradient boosting machine(LightGBM)and Shapley Additive exPlainations(SHAP)is proposed.First of all,to achieve better optimization ability and convergence speed,various strategies are used to improve SSA,including initialization population by Halton sequence,generating elite population by reverse learning and multi-sample learning strategy with linear control of step size.Then,the ISSA is applied to optimize the hyper-parameters of light gradient boosting machine(LightGBM)to improve the prediction accuracy when facing massive high-dimensional data.Finally,SHAP is used to provide global and local interpretation of the prediction model.The effectiveness of the proposed method is validated by a series of comparative experiments based on a real-world dataset.
机构地区 School of Management
出处 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期168-180,共13页 北京理工大学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.62172287,62102273)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部