期刊文献+

Synergistic engineering of cobalt selenide and biomass-derived S,N,P co-doped hierarchical porous carbon for modulation of stable Li-S batteries

原文传递
导出
摘要 Hierarchical porous carbon co-doped with heterogeneous atoms has attracted much attention thanks to sizable internal void space accommodating electrolyte,high-density microporous structure physically con-fining polysulfides(LPS),and heterogeneous atoms serving as active sites to capture LPS.However,solely relying on carbon material defects to capture LPS proves ineffective.Hence,metal compounds must be introduced to chemisorb LPS.Herein,cobalt ions are in-situ grown on the polydopamine layer coated on the surface of biomass-derived S,N,P co-doped hierarchical porous carbon(SNP-PC).Then a layer of nitrogen-doped porous carbon(MPC)dotted with CoSe nanoparticles is acquired by selenizing.Thus,a strong-polar/weak-polar composite material of SNP-PC studded with CoSe nanoparticles is obtained(SNP-PC@MPC@CoSe).Button cells assembled with SNP-PC@MPC@CoSe-modified separator enable superb long-cycle stability and satisfactory rate performance.An excellent rate capacity of 796 mAh g^(−1)at a high current rate of 4 C with an ultra-low capacity fading of 0.06%over 700 cycles can be acquired.More impressively,even in a harsh test condition of 5.65 mg cm^(−2)sulfur loading and 4μL mg^(−1)ratio of electrolyte to active materials,the battery can still display a specific capacity of 980 mAh g^(−1)(area capacity of∼5.54 mAh cm^(−2))at 0.1 C.This work provides a promising route toward high-performance Li-S batteries.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第3期11-21,共11页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(No.52003110) the Natural Science Foundation of Jiangxi Province(Nos.20202ACB202002,20202ACB214002).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部